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2.4 The Forces Causing the Motion of Water in a Porous Media 
 
 

We first use the control volume approach to consider the applied forces acting on a small volume of 
fluid within a porous medium. These forces, which are depicted in Figure 2.7, are the weight of the 
fluid and the forces due to fluid pressure. When the fluid is in motion, there are also frictional forces 
that tend to oppose the motion. 
 
First we have to review some important definitions and notations, 
 

         AreaessureForce
Area
Forceessure ×=⇒= PrPr                        (2.15) 

 

        VolumeDensityMass
Volume
MassDensity ×=⇒=             (2.16) 
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Figure 2.7    The applied forces acting on a small volume of fluid within a porous media   
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The resultant of the fluid weight and the forces due to hydrostatic pressure is given by: 
 
 F= ( ) ( ) ( )kWFFFjFFFiFFF zzzyyyxxx −Δ+−+Δ+−+Δ+− )()()(           (2.17) 

 
where i, j and k are the unit vectors in the x, y and z directions respectively. 
 

 But, gzyxgVolumeonacceleratigravitymassWeight ××ΔΔΔ=××=×= ρρ  
 

In terms of the pressures on each face of the volume, the resultant force can be written: 
 

F = 
( ) ( ) ( ) ( )kgkPPPjPPPiPPP zyxyxzzzxzyyyzyxxx ΔΔΔ−ΔΔΔ+−+ΔΔΔ+−+ΔΔΔ+− ρ)()()(  

                     (2.18) 
 
 

or, 
   F= ( ) kzgPjPiP yxzxzyzyx ΔΔΔ+Δ−ΔΔΔ−ΔΔΔ− ρ            (2.19) 

 
      
Dividing by ∆x∆y∆z gives the force per unit volume 
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Now letting ∆x, ∆y and ∆z tend to zero gives, 
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Notice here that the expressions z∇  and k are identical. 
 
Following Darcy, we now apply the result that the specific discharge is proportional to the applied 
force. Initially we consider the cases of isotropic and anisotropic media separately. 

 
 
 

2.4.1 Flow in Isotropic Porous Media (The General Case) 
 

In an isotropic medium we assume that there are no preferential directions within the medium and 
consequently that the specific discharge is in the same direction as the resultant force on a volume of 
fluid. Darcy’s Law states that the specific discharge is proportional to the head or energy gradient 
which represents the force applied to a volume of water and so this can be written. 
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The constant of proportionality has been decomposed into the ratio of two quantities: 

 
 k     the intrinsic permeability of the medium        [L2] 
 μ     the dynamic viscosity of the fluid                  [ML-1T-1] 

 
Notice that the intrinsic permeability is a property of the porous medium whereas the dynamic 
viscosity is a property of the fluid. 

 
Notice also that the expression for q above cannot be simplified to:   
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Since 1/ρg in outside the ∇  operator and then it requires that ρ and g be constant.  

 
 

2.4.2 Flow in Isotropic Porous Media (Constant Density) 
 

The acceleration due to gravity is a physical constant, but if it is assumed that ρ is also constant, then 
we can write: 
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or, it can also be written in different notation as: 
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where K is known as the Hydraulic Conductivity [LT-1]. Notice here that the hydraulic conductivity is 
given by: 

      gkK ρ
μ

=              (2.26) 

and is a property both of the porous medium, (since it is a function of k), and of the fluid contained in 
it, since it depends also on μ. Equation 2.25 should be recognized as a simple extension of Darcy’s 
experimental results to two or three dimensions.  However, it is important to realize that equation 
2.25 is valid only if the density of the fluid is constant.  

 
Thus, if the density of the groundwater is affected significantly by, say, the presence of dissolved salts, 
as in the case of seawater intrusion problems, then the use of this equation is inappropriate and the 
problem must be formulated in terms of fluid pressures rather than piezometric head equation 2.25. 
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2.4.3 Flow in Anisotropic Porous Media (General Case) 
 

The form of Darcy’s Law given in equation 2.22 implies that the specific discharge vector is in the 
same direction as the applied force. In other words pushing groundwater in one direction results in 
flow in that and only that direction. In many real cases this in not true. Consider, for example, the 
case of flow in fractured rock. It may be that fractures in a particular orientation are dominant in 
terms of conducting water, in which case there will be a tendency for water to flow in that direction 
even if the head gradient is not aligned with it. A similar phenomenon occurs in the vertical 
dimesnsion in stratified aquifers, e.g. alluvial aquifers composed of sands and gravels (medium to high 
permeability) interspersed with extensive layers of clay (low permeability). 

 
In an isotropic medium the component of the applied force along each coordinate axis produces flow 
in that direction only. However, in anisotropic medium each component of the applied force will 
potentially produce a specific discharge in each of the three coordinate directions. So, for example, 
the specific discharge in the direction x is caused in part by all the components of the applied force F. 
That is  
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For some constants kxx, Kxy and kxz 

 
In this case we express Darcy’s Law in full as  
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which is more suitability expressed in matrix form 
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or as  

     [ ]zgPkq ∇+∇−= ρ
μ

           (2.30) 
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2.4.4 Flow in Anisotropic Porous Media (Constant Density) 
 

In the case of a homogeneous fluid, the density is constant and we can write 
 
      hKq ∇−=               (2.31) 
 

and if the principal axes of permeability are aligned with the x, y and z axes then the hydraulic 
conductivity tensor is given by 
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2.4.5 Change of Coordinates 

 
It is natural to ask whether the three principal coefficients can be used in some way if the principal 
axes of the permeability are not aligned with the x, y and z axes. The following argument shows how 
the full permeability tensor can be determined from the principal components. The argument is 
developed in the two-dimensional case with fluid of constant density, but the result extends easily to 
three dimensions and is essentially similar in form for the variable density case. 

 
Let the coordinate axes be x and y and let the principal axes of permeability be X and Y as shown in 
Figure 2.8. 
 
Then, 
 X the direction along which the permeability has an absolute maximum value. 
 Y a perpendicular direction to X, in which permeability has an absolute minimum value. 
 
(X, Y): principle directions of permeability 
 
 kmax (x, y) [L/T] absolute maximum value of permeability  
 kmin (x, y) [L/T] absolute minimum value of permeability 
 θ (x, y)     [degree] angle from +x-coordinate axis to direction of maximum permeability 

 
 

Then the components of specific discharge are given by 
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From Figure 2.8 it can be seen that the following relationships hold between the two coordinate 
systems. 
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from which we can derive the partial derivatives of h with respect to X and Y in terms of x,y and θ as 
follows 
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Substituting equation 2.35 into Darcy’s Law (equation 2.31), and the resulting equation into 
equation 2.33 gives 
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but, From the Permeability Ellipse shown in Figure 2.8, 
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Figure 2.8 
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2.5 The Continuity Equation for Fluid Flow in Porous Media 
 

The principal of the conservation of mass is fundamental to all hydrology and is expressed 
mathematically by the continuity equation. 

 
The development of the equation presented in this section is perfectly general. The equation is 
developed by considering the change in mass of a substance stored in a small control volume over a 
short time period. 

 
The fundamental principle is that, for a fixed volume over a given period of time: 

 
Increase in mass stored = mass inflow – mass outflow 

 
The continuity equation expresses the conservation of fluid mass within the porous medium. It can be 
developed by considering the mass balance within a small volume of aquifer shown in Figure 2.9. At 
this stage we assume that the flow through the control box is due entirely to flow across the faces of 
the box, i.e. that there are no fluid sources or sinks within the box itself. We also allow the porosity of 
the aquifer and the fluid density to vary in time. 

 
Figure 2.9   The mass fluxes across the walls of the control volume 

 
Let n [dimensionless] be the porosity of the volume at time t, M [M] the mass of fluid contained in the 
volume at time t, and ρ [ML-3] the density of the fluid at time t. 

 
Then the change in mass in the volume during time ∆t can be determined by calculating the 
difference in the mass at the end and the beginning of the time interval. This can be done in two 
ways.  
 
First, by calculating the mass by multiplying the density of the fluid with the porosity of the aquifer 
multiplied by the volume of the control box. This gives   

 
 

    ( )( )[ ] zyxnnnM ΔΔΔ−Δ+Δ+=Δ ρρρ             (2.38) 
 

Second, by calculating the mass in terms of the volume fluxes (specific discharges) in and out of the 
control box, the change in mass is given by: 
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Eliminating ∆M from equations 2.38 and 2.39, dividing through by ∆x∆y∆z∆t and rearranging gives  
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Now letting ∆x∆y∆z and ∆t tend to zero gives: 
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This can be written, 
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2.6 The Storage of Fluid within the Aquifer 
 

Aquifers act both as water conduits and as reservoirs. Under steady state flow conditions, the quantity 
of water stored in the aquifer remains constant in time. Water flowing from a volume of aquifer is 
replaced by an equal quantity of incoming water. However, recharge to an aquifer and abstractions 
from it are generally time-varying. In such cases the amount of water stored in the aquifer changes 
over time. 
 
When water is pumped from a phreatic aquifer, water is released from storage by the lowering of the 
water table, and the volume of water released is equal to the volume of extra void spaces produced 
by this lowering. 
 
When a confined aquifer is pumped, water is released due to the effects of reducing the pressure 
within the aquifer. This reduction in pressure may result in the compaction of the aquifer, reducing 
the void space and squeezing out the groundwater like water from a sponge. If the pressures in the 
aquifer are high enough to compress the groundwater itself then reducing the pressure will result in 
the groundwater increasing in volume, causing an increased yield. If the piezometric surface is drawn 
down below the top of the aquifer then the aquifer will behave locally like a phreatic one. In reality, 
dewatering of an aquifer often occurs as a result of combination of these factors. 
 
It is important in resource planning to understand how much water that is produced by initial pumping 
comes from a transient dewatering of the aquifer and how much is sustainable for longer periods. 
 
We concentrate here on confined aquifers. The dewatering of phreatic aquifers due to the lowering of 
the water table will be discussed later. 
 
The term on the left hand side of the continuity equation (equation 2.42) expresses how the 
storage of fluid in the control volume within the saturated part of the aquifer changes with time. This 
term can be expanded to give: 
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The derivation in first term on the right hand side of equation 2.43 expresses the rate of change of 
porosity with respect to time and this change in porosity is generally taken to be caused by the 
compaction of the aquifer as water is withdrawn and the pressure reduced. The remaining derivative 
expresses the rate of change of fluid density with respect to time which may also be a function of the 
releases of pressure and the compressibility of the fluid. It may also be a function of density changes 
due to temperature or solute concentration. 
 
 
2.6.1 Storage Changes Due to Aquifer Compaction 
 
The external load on an aquifer is absorbed partly by the solid material and partly by the fluid 
pressure. Thus, the total stress on the aquifer Tσ is the sum of the effective stress eσ and the 

groundwater pressure: 
      PeT += σσ             (2.44) 

 
Since the external load, and hence the total stress, are assumed to be constant we have that  
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It is generally assumed that the relative decreases in total volume are proportional to the increase in 
effective stress (see equation 2.13). 
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where α  is the coefficient of compressibility of that part of the aquifer 
 
Dividing by ∆t and letting ∆t tend to zero gives 
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The total volume, TV , of a portion of aquifer is the sum of the volume of the solids, SV , and the 

volume of groundwater (or void space), WV . The bulk porosity can be expressed in terms of these 

volumes, and since we assume here that the solids comprising the aquifer are effectively 
incompressible, we have from definition of porosity that  
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Now combining equations 2.47 and 2.48 gives 
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Thus the expression 
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Represents the rate of change due to aquifer compaction. 
 
 
Typical values of α are given by Freeze and Cherry for a variety of rocks are reproduced in Table 
2.1. 
      
De Marsily (1986) gives an account incorporating the effect of compaction of the solid material. 
However the coefficient of compressibility of the solid material within an aquifer is generally very low 
(de Marsily gives a value of quartz as 2 x 10-11 m2N-1) and is thus the effect of the compaction of 
solids is generally ignored. 
 
It should be noted here that the changes in storage due to aquifer compaction is not a truly reversible 
process and that although pumping water into an aquifer will increase the fluid pressure and so 
decreases the effective stress, the aquifer will not reflate. In other words the aquifer is not truly 
elastic and the Hooke’s Law type equation 2.46 is really only valid when the effective stress is 
increasing. However, it is usual to use the same storage coefficient when pumping from or into an 
aquifer. 
 
 
2.6.2 Storage Changes Due to Compressibility of the Fluid 
 
For constant temperature systems the second term on the right hand side of equation 2.43 can be 
further expanded to give 
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where  
 β  is the coefficient of compressibility of the fluid, and 

 cβ  is the coefficient of density change as a function of contaminant concentration change. 

 

Thus,   

( )

( ) ( )[ ]
t
cn

t
Pnn

t
n

t
n

t
nn

t

c ∂
∂

+
∂
∂

−+=
∂

∂
∂
∂

+
∂
∂

=
∂
∂

ρβαβρρ

ρρρ

1
           (2.52) 



 38

The value of β  for water is about 5 x 10-10 m2N-1. The value of cβ is a function of the contaminant. 

For practical purposes we assume that the last term in equation 2.52 is zero and we define the 
specific storativity SS [L-1] by  

 
     ( )[ ]αβρ nngSS −+= 1            (2.53) 

from which 
      

     
( )

t
P

g
S

t
n S

∂
∂

=
∂

∂ ρ
            (2.54) 

 
The specific storativity represents the volume of water released per unit volume of aquifer per unit 
decreases in pressure. 
 
 
2.6.3 The Final Form of the Continuity Equation 
 
We are in a position to formulate the continuity equation in terms of fluid pressure. Using equations 
2.42 and 2.54 gives 
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If the density of the fluid is homogeneous and constant the continuity equation can be written in 
terms of piezometric head instead of pressure. From the definition of piezometric head equation 2.2 
we have that 
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since ρ is constant. 
 
So equation 2.55 becomes 
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Since the fluid is homogeneous the continuity equation becomes 
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t
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2.7 The Three-Dimensional Equations of Groundwater Flow 
 
2.7.1 Flow in Confined Aquifers 
 
Having established the mathematical formulations of Darcy’s Law and the mass balance or continuity 
equation, it is a simple matter to develop the equation describing three-dimensional fluid flow through 
a porous medium. In the case of density dependent flow we must use a formulation based upon 
pressure. Substituting the expression for the specified discharge q given by Darcy’s Law (equation 
2.30) into the pressure formulation of the continuity equation (equation 2.55) gives 
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In the simpler case of a homogeneous fluid with constant density we can use a formulation in terms 
of head. Substituting for q from equation 2.31 into equation 2.58 gives 
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which can be written 
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If the aquifer is isotropic this becomes  
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If it is also homogeneous the equation becomes 
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2.7.2 Flow in Layered Media 
 
In this section we investigate groundwater flow through a class of aquifer formations with anisotropic 
permeability. These are aquifers composed of a number of layers of rocks with different permeabilities. 
Unless otherwise stated, we assume for simplicity that the layers of rock are horizontal. However the 
major results of this section apply equally to strata which are not horizontal. 
 

The Effective Hydraulic conductivity Parallel to the Layers 
 
Consider the horizontal flow through a stratified with N layers with hydraulic conductivity K1, K2, …, KN 
and thickness b1, b2, …, bN. Then for each layer, Darcy’s Law gives 
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Since the discharge through the aquifer must equal the sum of the discharges through each layer we 
have that the total discharge is given by 
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Using the total discharge and an effective (average) horizontal hydraulic conductivity *
hK , Darcy’s 

Law gives 
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Substituting for iQ  in equation 2.65 and eliminating Q from equations 2.65 and 2.66 gives 
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Whence     
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Which is the weighted arithmetic mean of the hydraulic conductivities. In terms of transmissivity this 
is  
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The Effective Hydraulic conductivity at Right Angles to the Layers 
 
 
Consider now the vertical flow across the layers of the aquifer. Let ihΔ  be the head drop across the 

'i th layer. Since mass continuity demands that the discharge across each layer be the same, using 
Darcy’s Law, we get that 
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where  
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Using the effective hydraulic vertical conductivity *
vK in Darcy’s Law gives 
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From equations 2.70 and 2.71 
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Substituting for 21 hh − in equation 2.72 and rearranging gives 
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This is the weighted harmonic mean of the hydraulic conductivities. 
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2.8 The Two-Dimensional Equations of Groundwater Flow 
 
The lateral extent of a regional aquifer is usually much greater than its thickness. This disparity 
between the vertical and horizontal dimensions of many aquifers has resulted in the adoption of two-
dimensional equations for the description of regional groundwater flow. In this case, the vertical flow 
components within the body of the aquifer are effectively ignored, and flow is assumed to be 
horizontal everywhere. In phreatic aquifers, this is known as the Dupuit Hypothesis. This is 
acceptable as long as the pressure changes due to vertical flow are small compared with those arising 
from horizontal flow. This is generally true in aquifers at some distance (greater than twice the 
thickness of the aquifer) from point sources or sinks. In the neighborhood of wells or partially 
penetrating streams, vertical flow components may be significant. However it is possible to introduce 
corrections in these zones if necessary in the development of the regional flow equation through the 
adoption of suitable approximations. The cases of confined and phreatic aquifers have to be 
considered separately. In the following development we assume that the fluid is homogeneous with 
constant density. 

 
 

2.8.1 The Horizontal Flow Assumptions and Darcy’s Law 
 
The assumption of horizontal flow allows the development of a vertically integrated from of Darcy’s 
law. In other words we can use a version of Darcy’s law which represents the fluid flow over the full 
depth of an aquifer rather than just at a point in three-dimensional space. 
 
For simplicity we consider flow in the x direction only. In this case Darcy’s law is  
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We now integrate over the vertical dimension to give, xQ , the discharge per unit width of aquifer. 

 

∫ ∂
∂

−=
2

1

z

z
xx dz

x
hKQ                 (2.76) 

 
Since we assume that flow is horizontal it follows that we assume also that h is constant over depth 

and hence that 
x
h
∂
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is constant over depth. Hence we can write 
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2.8.2 Horizontal Flow in Confined Aquifers  
 
In confined aquifers the lower and upper limits of the integral refer to the elevation of the base and 
the top of the aquifer respectively. In this case the integral of hydraulic conductivity over depth is 
called the transmissivity T of the aquifer at a point. So parallel to the x axis we write Darcy’s law as 
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and in both horizontal dimensions as 
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If in addition we assume that the hydraulic conductivity is constant over depth then the transmissivity 
is just the product of the hydraulic conductivity and the depth of the aquifer at a point, i.e. 
 

KbT =             (2.82) 
 

 We also define a new storage coefficient, S, called storativity given by 
 

sSbS =              (2.83) 

which represents the volume of water released from a unit area of aquifer per unit decrease in head. 
 
Substituting for xQ  and yQ in the continuity equations 2.61 & 2.62 using Darcy’s law (assuming 

that the principal axes of permeability are aligned with the coordinates axes) gives 
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If the transmissivity is isotropic the equation becomes 
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If in addition the transmissivity is homogeneous the equation becomes  
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Finally, if the groundwater flow system is in steady state, that is the head values are not varying over 
time, then the equation reduces to the Laplace Equation 
 

02

2

2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

y
h

x
h

            (2.87) 

 
 
2.8.3 Horizontal Flow in Unconfined Aquifers  
 
 
The approach to the development of the two-dimensional flow equation for unconfined aquifers is the 
same as in the confined case, based upon the use of a control volume. A conceptual model of a leaky 
confined aquifer system is shown in Figure 2.10. The essential difference between the cases is that, 
whereas in the confined case the control volume is defined by the geometry of the aquifer, in the 
unconfined case, the top of the control volume coincides with the water table and, therefore, rises and 
falls with it. 
 
 
 



 43

 
Figure 2.10 

 
The limits of the integral in the integrated from Darcy’s law now correspond to the elevation of the 
bottom of the aquifer and to the elevation of the water table, and so we get 
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where η  is the elevation of the base of the aquifer 
 
Since h is not constant, we cannot define a constant transmissivity for unconfined aquifers. However, 
if K is constant over depth we can write 
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The specific yield yS is defined as the volume of water released from a unit area of an unconfined 

aquifer due to a unit decrease in the water table. To emphasize that the specific yield is not the same 
as the porosity, some authors introduced the specific retention RS  which is defined as the difference 
between total porosity and the specific yield. 
 
Substituting for xQ  and yQ in the continuity equation using Darcy’s law (assuming that the principal 

axes of permeability are aligned with the coordinates axes) gives 
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If the permeability is isotropic the equation becomes 
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For homogeneous conditions the equation becomes  
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These are all forms of the Boussinesq Equation. 
 
It is important to note that unlike the equations describing horizontal groundwater flow in confined 
aquifers, those describing horizontal flow in unconfined aquifers are not linear since they contain 
terms involving the product of the state variable h  and its spatial derivations. This means that they 
must be solved iteratively which can be very time consuming. Some computer codes employ a 
technique of linearization of the equations to cut down on computer time. This involves replacing 

)( η−h by an average saturated thickness b. This is only justifiable if the lateral extent of the aquifer 
is much greater than the saturated thickness. 
 
 

2.9 Further Treatments of Groundwater Flow Equations  
 
2.9.1 Confined Aquifer 
 
If there is the steady movement of groundwater in a confined aquifer, there will be a gradient or slope 
to the potentiometric surface of the aquifer. Likewise, we know that the water will be moving in the 
opposite direction of grad h. For flow of this type, Darcy’s law may be used directly. In Figure 2.8, a 
portion of a confined aquifer of uniform thickness is shown. The potentiometric surface has a linear 
gradient; i.e., its two-directional projection is a straight line. There are two observation wells where 
the hydraulic head can be measured. 
 
The quantity of flow per unit width, q, may be determined from Darcy’s law: 

 

     
dl
dhKbq −=      (2.93) 

 where,  q  is the flow per unit width (m2/day) 

   K  is the hydraulic conductivity (m/day) 
   b  is the aquifer thickness (m) 

   
dl
dh

 is the slope of potentiometric surface (dimensionless) 

 
One may wish to know the head, h  (m), at some intermediate distance, x (m), between 21 handh . 
This may be found from the equation. 

     x
Kb
qhh −= 1             (2.94) 

 where,  x is the distance from 1h . 
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Figure 2.8 Steady flow through a confined aquifer of uniform thickness 

 
 
2.9.2 Unconfined Aquifer 
 
In an unconfined aquifer, the fact that the water table is also the upper boundary of the region of flow 
complicates flow determinations. Figure 2.9 illustrates the problem. On the left side of the figure, the 
saturated flow region is 1h  feet thick. On the right side, it is 2h feet thick, which is 21 hh − feet thinner 
than the left side. If there is no recharge or evaporation as the flow traverses the region, the quantity 
of water flowing through the left side is equal to that flowing through the right side. From Darcy’s law, 
it is obvious that since the cross-sectional area is smaller on the right side, the hydraulic gradient 
must be greater. Thus, the gradient of the water table in unconfined flow is not constant; it increases 
in the direction of flow. 
 
This problem was solved by Dupuit, and his assumptions are known as the Dupuit assumptions. 
The assumptions are that (1) the hydraulic gradient is equal to the slope of the water table and (2) for 
small water-table gradients, the streamlines are horizontal and the equipotential lines are vertical. 
Solutions based on these assumptions have proved to be very useful in many practical problems. 
However, the Dupuit assumptions do not allow for a seepage face above the outflow side. 
 

 
Figure 2.9 Steady flow through an unconfined aquifer resting on a horizontal impervious surface 
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From Darcy’s law, 
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dhKhq −=             (2.95) 

 
where h is the saturated thickness of the aquifer. At x=0, 1hh= ; at x=L, 2hh=  
 
Equation 2.95 may be set up for the integration with the boundary conditions: 
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Integration of the preceding yields: 
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Rearrangement of equation 2.97 yields the Dupuit equation 
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If we consider a small prism of the unconfined aquifer, it will have the shape of Figure 2.10. On one 
side it is h units high and slopes in the x-direction. Given the Dupuit assumptions, there is no flow in 
the z-direction. The flow in the x-direction, per unit width, is xq  . From Darcy’s law, the total flow in 

the x-direction through the left face of the prism is 
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where dy is the width of the face of the prism. 

 
Figure 2.10 Control volume for flow through a prism of an unconfined aquifer with the bottom 
resting on a horizontal impervious surface and the top coinciding with the water table. 
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The discharge through the right face, dxxq + is 

 

    dy
x
hhKdyq

dxx
dxx

+
+ ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=             (2.100) 
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hh has different values at each face. The change in flow rate in the x-direction between 

the two faces is given by 
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Through a similar process, it can be shown that the change in the flow rate in the y-direction is 
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For steady flow, any change in flow through the prism must be equal to a gain or loss of water across 
the water table. This could be infiltration or evapotranspiration. The net addition or loss is at a rate of 
w , and the volume change within the initial volume is dydxw where dydx is the area of the surface. 
If w  represents evapotranspiration, it will have a negative value. As the change in flow is equal to the 
new addition, 
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We can simplify equation 2.103 by dropping out dydx and combining the differentials: 
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If w =0, then equation 2.104 reduces to a form of the Lapalce equation: 
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If flow is in only one direction and we align the x-axis parallel to the flow, then there is no flow in the 
y-direction, and equation 2.104 becomes 
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Integration of this equation yields the expression  
 

     21
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where 21 candc are constants of integration. 
 
The following boundary conditions can be applied: at x=0, 1hh= ; at x=L, 2hh=  (Figure 2.11). By 
substituting these into equation 2.107, the constants of integration can be evaluated with the 
following result: 
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where,  
   h  is head at x(m) 
   K  is the hydraulic conductivity (m/day) 
    x is the distance from the origion(m) 
   1h  is the head at the origin(m) 
   2h  is the head at L (m) 

   L  is the distance from the origin at the point 2h is measured (m) 
   w  is the recharge rate (m/day) 
 

 
Figure 2.11 Unconfined flow, which is subject to infiltration or evaporation 

 
 

This equation can be used to find the elevation of the water table anywhere between two points 
located L distance apart if the saturated thickness of the aquifer is known at the two end points. 
 
For the case in which there is no infiltration or evaporation, w=0 and equation 2.109 reduces to  
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By differentiating equation 2.108, and because 
dx
dhhKqx −=  , it may be shown that the discharge 

per unit width, xq , at any section x distance from the origin is given by: 
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If the water table is subject to infiltration, there may be a water divide with a crest in the water table. 
In this case, xq will be zero at the water divide. If d is the distance from the origin to a water divide, 

then substituting  0=xq  and dx= into equation 2.110 yields: 
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Once the distance from the origin to the water divide has been found, then the elevation of the water 
divide may be determined by substituting d for x in equation 2.109 
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