Palestinian National Authority Palestinian Water Authority

السلطة الوطنية الفلسطينية سلطة المياه الفلسطينية

Steady State and Transient Flow Models of the Western Aquifer Basin

Final Report SUSMAQ - MOD # 49 V0.1

> Prepared by: SUSMAQ TEAM

Palestinian Water Authority, Palestine Water Resource Systems Research Laboratory University of Newcastle upon Tyne, UK

July, 2005

SUSMAQ

UNIVERSITY OF NEWCASTLE

NERC British Geological Survey

Department for International

Development

DFD

Disclaimer	Contact Details
This report is an output from the Flow Modelling and Hydrogeology Component, part of the SUSMAQ project.	Professor Enda O'Connell Project Director University of Newcastle upon Tyne
The findings, interpretations and conclusions expressed	Tel: 0191 222 6405
are those of the authors (the team) and should not be	Fax: 0191 222 6669
attributed to other collaborators on the SUSMAQ project.	Email: P.E.O Connell@ncl.ac.uk
The project does not guarantee the accuracy of the data included in this publication. Boundaries, colours,	Engineer Fadle Kawash Deputy Chairman
denominations and other information shown in maps,	Palestinian Water Authority
on legal status of territory or the endorsement of	Tel:02 295 9022 Fax 02 2981341
boundaries. The typescript of this report has not been	Email: fkawash@pwa-pna.org
formal printed texts, and the partners and funding agency	Dr. Amjad Aliewi
accept no responsibility for errors.	Operations and Technical Manager
	Team Leader, Hydrogeology and Flow Modelling
	Al-Irsal Road
	Al-Bireh/Ramallah, Palestine
	Tel. 02 298 89 40 Fax. 02 298 89 41
	e-mail: a.s.aliewi@ncl.ac.uk
The SUSMAQ Project	The Flow Modelling and Hydrogeology
The aim of the project is to increase understanding of the	Component is part of the SUSMAQ project
sustainable yield of the West Bank and Gaza aquifers under a range of future economic demographic and land	The development of a Steady State and Transient
use scenarios, and evaluate alternative groundwater	Flow Models for WAB will help approximate the
management options. The project is interdisciplinary,	actual physical situation of the aquifer system;
modellers with economists and policy experts. In this	complex ground water system of WAB: assess the
way, hydrogeological understanding can inform, and be	groundwater flow characteristics of WAB and
informed by, insights from the social sciences. The	interpret the spatial distribution of the related
making at all levels in relation to the sustainable yield of	steady state model provides information about the
the West Bank and Gaza aquifers.	water budget of the basin as a whole. This budget
The project runs from November 1999 to October 2004,	will provide details about the water balance
Authority. University of Newcastle and the British	between the aquifer units as well and between the basins as its boundaries
Geological Survey. The project is funded by the United	The development of the transient model is
Kingdom's Department for International Development	essential to estimate the sustainable yield of WAB
(DFID).	and to test the impacts of future development and abstraction scenarios on current pumping in the
	Western Aquifer Basin.
Bibliographical Reference	Feedback
Steady State and Transient Flow Models of the Western	
Aquifer Basin. Report No.: SUSMAQ-MOD #49 V0.1.	The SUSMAQ and PWA teams will appreciate
Aquifers, Palestinian Water Authority (Palestine) and	sent to the above contacts.
University of Newcastle upon Tyne (UK).	
Study Team and Authors:	
Dr. Amiad Aliewi – Team Leader: Eng. Muath Abu	
Saada; Hydro. Abbas Kalbouneh; Hydro. Clemens	
Messerschmid.	
Contributors: Eng. Khalil Saleh, Hydro. Omar Zaid.	
Eng. Deeb Abdul Ghafour.	

Table of Contents

1.	Intro	oduction and background		10
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Scope and objectives Area Climate Geography Geology Water use Previous studies	16	10 10 12 12 15
2.	Upd	ated and corrected conceptual model		17
	2.1 2.2	Aims and principles of the conceptual model Model boundaries 2.2.1 General 2.2.2 Boundaries by regions		17 18 18 20
	2.3	 Western aquifer basin geometry 2.3.1 General 2.3.2 Hydrostratigraphy and aquifer units 2.3.3 Aquifer unit thicknesses 		22 22 22 29 31
	2.4	Connections between aquifers		37
	2.5	Hydrological stresses		39
		2.5.1 Recharge estimation2.5.2 Well abstractions2.5.3 Springs discharge		39 42 47
	2.6	The flow system of WAB		47
		2.6.1 Water levels2.6.2 Groundwater flow patterns		47 50
	2.7	Aquifer hydraulic and physical properties		50
		2.7.1 The confinement line and storage coefficients2.7.2 Hydraulic conductivity and transmissivity2.7.3 Aquifer porosity		50 52 52
3.	Stea	ady state model set-up		53
	3.1	Introduction and objective		53
	3.2	Selection of a simulation period		54
	3.3	Conceptual approach (coverage)		55
	3.4	Model grid		56

	3.5	3D representation	60				
	3.6	Assigning recharge, discharge and k-values to model cells					
	6	1					
4.	Calib	pration	62				
	4.1	Introduction	62				
	4.2	Before utilisation	62				
	4.3	After utilisation	73				
5.	Simu	lation results	75				
	5.1	Water levels for UA and LA	75				
	5.2	Flow patterns for UA and LA	80				
6.	Wate	r budget	86				
	6.1	Inflows (recharge)	86				
	6.2	Outflows	86				
	6.3	Water budget for UA "Before utilization"	87				
	6.4	Water budget for Yatta Formation "Before utilization"	87				
	6.5	Water budget for LA "Before utilization					
	6.6	Water budget for WAB "Before utilization"	88				
	6.7	Water budget for UA "1993-1998"	88				
	6.8	Water budget for Yatta Formation "1993-1998"	88				
	6.9	Water budget for LA "1993-1998"	89				
	6.10	Water budget for WAB "1993-1998"	89				
7.	Trans	sient flow model construction	90				
	7.1	Scope	90				
	7.2	Simulation period	90				
	7.3	Preparation of well abstraction data	90				
		7.3.1 Well locations	93				
		7.3.2 Recharge estimation	95				
	7.4	Preparation of annual recharge data	96				
		7.4.1 Annual recharge estimation	96				
		7.4.2 Monthly recharge estimation	104				
	7.5	Preparation of spring discharge data	108				
	7.6	Hydraulic properties of the aquifers	110				
	7.7	Observation data (target points)	119				

7.8 Initial heads and boundary conditions 12 7.9 Model setup and results of simulations 122 7.10 Sensitivity analysis 125 7.11 Modification of the recharge equations 130 8. Transient flow model calibration 133 8.1 Introduction 133 8.2 Estimation of the safe sustainable yield 133 8.2 Estimation of the safe sustainable yield 136 8.2.1 Perennial safe yield 136 8.2.2 Maximum perennial yield 141 8.2.3 Stressed sustainable yield 141 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148			Steady State and Transient Flow Models of the Western Aquifer Basin				
7.9 Model setup and results of simulations 122 7.10 Sensitivity analysis 125 7.11 Modification of the recharge equations 130 8. Transient flow model calibration 133 8.1 Introduction 133 8.2 Estimation of the safe sustainable yield 133 8.2 Estimation of the safe sustainable yield 136 8.2.1 Perennial safe yield 136 8.2.2 Maximum perennial yield 139 8.2.3 Stressed sustainable yield 141 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148		7.8	Initial heads and boundary conditions	121			
7.10 Sensitivity analysis 125 7.11 Modification of the recharge equations 130 8. Transient flow model calibration 133 8.1 Introduction 133 8.2 Estimation of the safe sustainable yield 133 8.2.1 Perennial safe yield 136 8.2.2 Maximum perennial yield 139 8.2.3 Stressed sustainable yield 141 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148		7.9	Model setup and results of simulations 1				
 7.11 Modification of the recharge equations 8. Transient flow model calibration 8.1 Introduction 8.2 Estimation of the safe sustainable yield 8.2.1 Perennial safe yield 8.2.2 Maximum perennial yield 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 144 9. Bibliography 		7.10	Sensitivity analysis	125			
 8. Transient flow model calibration 8.1 Introduction 8.2 Estimation of the safe sustainable yield 8.2.1 Perennial safe yield 8.2.2 Maximum perennial yield 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 9. Bibliography 		7.11	Modification of the recharge equations	130			
 8.1 Introduction 133 8.2 Estimation of the safe sustainable yield 133 8.2.1 Perennial safe yield 136 8.2.2 Maximum perennial yield 139 8.2.3 Stressed sustainable yield 141 8.2.4 Mining yield 142 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148 	8.	Trans	ient flow model calibration	133			
 8.2 Estimation of the safe sustainable yield 8.2.1 Perennial safe yield 8.2.2 Maximum perennial yield 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 9. Bibliography 143 		8.1	Introduction	133			
 8.2.1 Perennial safe yield 8.2.2 Maximum perennial yield 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 9. Bibliography 		8.2	Estimation of the safe sustainable yield	133			
 8.2.2 Maximum perennial yield 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 9. Bibliography 			8.2.1 Perennial safe yield	136			
 8.2.3 Stressed sustainable yield 8.2.4 Mining yield 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 8.4 Results and conclusions 9. Bibliography 			8.2.2 Maximum perennial yield	139			
8.2.4 Mining yield 142 8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148			8.2.3 Stressed sustainable yield	141			
8.3 Maximum abstraction from the Palestinian management zones in the Western Aquifer Basin 143 8.4 Results and conclusions 144 9. Bibliography 148			8.2.4 Mining yield	142			
Western Aquifer Basin1438.4Results and conclusions1449.Bibliography148		8.3	Maximum abstraction from the Palestinian management zones in the				
8.4 Results and conclusions1449. Bibliography148			Western Aquifer Basin	143			
9. Bibliography 148		8.4	Results and conclusions	144			
	9.	Biblie	ography	148			

Appendix A: Wells in WAB Appendix B: Monthly recharge estimation in Wadi Natuf

List of Figures

	Page
Figure 1.1: Location map of the Western Aquifer Basin	11
Figure 1.2: Ground elevations in the WAB	13
Figure 1.3: Geographic regions of the Western Aquifer Basin (the thin dotted line delineates the geographical borders of the WAB.)	14
Figure 2.1: Boundaries of the WAB	19
Figure 2.2: Schematic presentation of different groundwater boundary types	20
Figure 2.3: Hydraulic barrier formed by the Hebron anticline	21
Figure 2.4: Area where Yakhini and Talme Yafe unite to one bottom aquitard (128/124)	24
Figure 2.5: Structural contour map of Top Judea	25
Figure 2.6: Structural contour map of Top Telamim	26
Figure 2.7: Water levels at selected locations in WAB	28
Figure 2.8: Hydrogeological map of the WAB	30
Figure 2.9: Dalia Marl Location in the Western Aquifer Basin	32
Figure 2.10: Section of an area with reduced UA-thickness due to Dalia Marl	32
Figure 2.11: Reduced lateral size of Upper Aquifer in the WAB	33
Figure 2.12: Top Judea surface model: Taninim (Timsah) springs (blue), Menashe wells (red) and Binyamina fault between them – stretching W-E	37
Figure 2.13: Zones of assumed hydraulic connections between LA & UA, due to high throwing faults	38
Figure 2.14: Spatial distribution of recharge rates in WAB	41
Figure 2.15: Abstraction wells in WA	44
Figure 2.16: Volumes of extracted waters from UA and LA of WAB	45
Figure 2.17: Location of well fields in the LA of WAB	46
Figure 2.18: 1993 Water levels of WAB, compiled from Israeli sources	49
Figure 2.19: Location of confinment line and known water levels in WAB based on field data for the period 1990's	51
Figure 3.1: Well abstractions and water levels of WAB btween 1992 and	54
Figure 3.2: Schematic representation of the grid and layers for WAB Model (not to scale)	56
Figure 3.3: Boundaries of WAB and active cells for UA	57
Figure 3.4: Boundaries of WAB and active cells for Yatta Formation	58
Figure 3.5: Boundaries and active cells for lower aquifer in WAB	59
Figure 3.6: 3D representation of the Modelled WAB	60
Figure 4.1: Distribution of observed water levels in WAB for the period "before utilization" (After Guttman and Zukerman, 1995)	64
Figure 4.2: Simulated water levels by Guttman and Zukerman (1995) for the period "before utilization"	65
Figure 4.3: Simulated water levels by SUSMAQ (2003) for the period "before	66

utilization"	
Figure 4.4: Comparison between rhe results about water levels of WAB by Guttman and Zukerman (1995) and SUMAQ against observed water levels of period "before utilization"	67
Figure 4.5: Calibrated horizontal conductivity for Upper Aquifer Figure 4.6: Calibrated horizontal Conductivity for Lower Aquifer Figure 4.7: Calibrated vertical conductivity for Upper Aquifer	68 69 70
Figure 4.8: Calibrated vertical conductivity Yatta Formation	71
Figure 4.9: Calibrated vertical conductivity for Lower Aquifer Figure 4.10: Location of Target wells and calibration results for the period, 1993-1998	72 74
Figure 5.1: Simulated water levels for Upper Aquifer for the simulation period,	76
Figure 5.2: Simulated water levels for Lower Aquifer for the simulation period, "before utilization"	77
Figure 5.3: Simulated water levels for the Upper Aquifer for the simulation period, "1993- 1998"	78
Figure 5.4: Simulated water levels for the Lower Aquifer for the simulation period, "1993-1998"	79
Figure 5.5: Flow directions for Upper Aquifer for the simulation period, "before utilization"	81
Figure 5.6: Flow directions for Lower Aquifer for the simulation period, "before utilization"	82
Figure 5.7: Flow directions for Upper Aquifer for the simulation period, "1993- 1998"	84
Figure 5.8: Flow directions for Lower Aquifer for the simulation period, "1993- 1998"	85
Figure 7.1: Image from an Israeli report showing well locations and their respective abstraction range	92
Figure 7.2: Page from an Israeli report showing monthly abstraction for each well (in Hebrew)	93
Figure 7.3: Well locations in the Western Aquifer Basin	94
Figure 7.4: Location of the real and the hypothetical rainfall stations	98
Figure 7.5: Typical Rainfall Map for the years (1985/86-1997/98)	99
Figure 7.6: Discretized recharge area of the Western Aquifer Basin	101
Figure 7.7: Typical recharge estimation map of the Western Aquifer Basin	102
Figure 7.8: The recharge zones into which the discretized cells are lumpe	103
Figure 7.9 : Typical monthly Rainfall Map for the period (Apr86-Sep87)	107
Figure 7.10: The location of the Ras Al Ein (Yarkon) and the Timsah (Taninim) springs	109
Figure 7.11: Horizontal conductivity for Upper Aquifer	111
Figure 7.12: Horizontal conductivity for Lower Aquifer	112

Figure 7.13: Vertical conductivity for Upper Aquifer Figure 7.14: Vertical conductivity for Lower Aquifer	113 114
Figure 7.15: Storativity for Upper Aquifer	115
Figure 7.16: Storativity for Lower Aquifer	116
Figure 7.18: Confinement map for Lower Aquifer	118
Figure 7.19: Location of the eight observation wells	119
Figure 7.20: A plot of observed versus computed head values for the steady state model (Apr86-Sep87)	121
Figure 7.21: Plot showing a comparison between the observed heads and the simulated heads for Menashe 1 Well	122
Figure 7.22: Plot showing a comparison between the observed heads and the simulated heads for 15-19045 and 14-17/005 wells	123
Figure 7.23: Plot showing a comparison between the observed heads and the simulated heads for Petah Tikva and Ayalon 1 well	123
Figure 7.24: Plot showing a comparison between the observed heads and the simulated heads for Gezer and Beir Sheva wells	124
Figure 7.25: A plot of observed and simulated discharges vs. time for the Ras Al Ein (Yarkon) spring	126
Figure 7.26: A plot of observed and simulated discharges vs. time for the Timsah (Taninim) spring	126
Figure 7.27: A plot of sensitivity water levels to aquifer Storativity in the northern zone of the Western Aquifer Basin	127
Figure 7.28: A plot of sensitivity of water levels to aquifer Storativity in the Israeli zone of the Western Aquifer Basin	127
Figure 7.29: A plot of sensitivity of water levels to aquifer Storativity in the Western aquifer Basin	128
Figure 7.30: A plot of sensitivity of water levels to aquifer horizontal conductivity in the northern zone of the Western Aquifer Basin	128
Figure 7.31: A plot of sensitivity of water levels to aquifer horizontal conductivity in the middle zone of the Western Aquifer Basin	129
Figure 7.32: A plot of sensitivity of water levels to aquifer horizontal conductivity in the southern zone of the Western Aquifer Basin	129
Figure 7.33: A plot of sensitivity of water levels to aquifer horizontal conductivity in the Israeli zone of the Western Aquifer Basin	129
Figure 7.34: A plot of sensitivity of water levels to aquifer horizontal conductivity in the Western Aquifer Basin	131
Figure 7.35: A plot of annual recharge values versus rainfall values	132
Figure 7.36: The annual recharge-rainfall values divided into three groups Figure 8.2: The annual perennial safe yield for the years 1986/1987 through 2024/2025	135 137
Figure 8.3: Water levels in the upper aquifer of the northern zone, period 1998/99 - 2024/25	137
Figure 8.4: Water levels in the lower aquifer of the middle zone, period 1998/99 - 2024/25	138

Figure 8.5: Water levels in the lower aquifer of the Israeli zone, period 1998/99 - 2024/25	138
Figure 8.6: Drawdown around typical groundwater wells	139
Figure 8.7: Maximum Perennial Yield for the period between 1992/93 through 2024/25	140
Figure 8.8: Standardized water level under current abstraction scenario	141
Figure 8.9: Standardized water level under over pumping abstraction scenario	142
Figure 8.10: The effect of abstracting 760 Mcm annually from the WAB	143
Figure 8.11: Impact of abstracting 315 Mcm/yr from Middle Zone of the WAB	146
Figure 8.12: Impact of abstracting 420 Mcm/yr from Middle zone on the	146
Israeli Zone	

List of Tables

	Page
Table 1.1: Size of the Western Aquifer Basin and model areas	10
Table 1.2: Regions and range of elevations (in m asl)	15
Table 1.3: Outcrop area of aquifers and aquitards	15
Table 2.1: Chrono-, litho- and hydrostratigraphy of the Western Aquifer Basin (based on formation names in the mountains and western slopes area)	31
Table 2.2: Simplified correlation of Palestinian names and geophysical terms	34
Table 2.3: Stratigraphic Column of the Mountain Aquifer as used in SUSMAQ Model of WAB	35
Table 2.4: Thickness of formations	36
Table 2.5: Thickness of hydrostratigraphic units	36
Table 2.6: WAB Recharge (Mcm/yr) from different components according to aquifer formations for 93-98 period	40
Table 2.7: WAB Data of abstraction, injection and spring discharge (Mcm/yr) for 1987-1994	43
Table 4.1: Location and results for target wells (1993-1998)	73
Table 5.1: Historical discharge of Yarkon (Ras El-Ein) and Taninim (Timsah) Springs	80
Table 7.1: Table showing incomplete data from Israeli wells	91
Table 7.2: Cumulative Israeli Abstraction for the simulated period	95
Table 7.3: The recharge estimations for the recharged zones in the WAB	104
Table 7.4: Annual discharges of the Ras Al Ein (Yarkon) and the Timsah (Taninim) springs	109
Table 7.5: Approximated monthly discharge of the Timsah (Taninim) spring	110
Table 7.6: Water level readings in the eight observation wells	120
Table 7.7: Annual Calibrated Recharge and Rainfall Values	130
Table 7.8: Annual recharge-rainfall values divided into three groups	131
Table 8.1: Rainfall and the estimated sustainable yield for WAB	136
Table 8.2: Rainfall and the estimated maximum perennial sustainable yield for WAB	140
Table 8.3: Current abstractions for the four management zones	141
Table 8.4: The maximum Palestinian abstraction volumes for each Israeliabstraction scenario in each Palestinian Zone	144
Table 8.5: Maximum abstractions from Southern Zone for different Israeli abstraction scenarios	145
Table 8.6: Maximum abstractions comparison between Middle and NorthernZones for different Israeli abstraction scenarios	145
Table 8.7: Maximum Palestinian abstraction for different Israeli abstraction scenarios	147

1. Introduction and background

1.1 Scope and objectives

After a number of discussions in the fourth multidisciplinary workshop of SUSMAQ (see project report, **SUSMAQ-MAN#19 VO.1**) and a specialised technical meeting on flow and recharge models (see project report, **SUSMAQ-MAN#21 VO.1**), it was realised that the conceptual model presented in the report **SUSMAQ-MOD#06 VO.3** needed upgrading and updating since more data were available between the time the report was produced and now. This updated conceptual flow model is presented in this report. This report represents also the steady state and transient models of the Western Aquifer Basin (WAB) which are the main subject of this project, "Sustainable Management of the West Bank and Gaza Aquifers".

This project started under conditions of an almost complete absence of information about the aquifer system of the Western Basin. It was only possible to construct a flow model of the WAB when the database was completed to a reasonable level, although some more data are still needed to upgrade the models. The development of a steady state flow model for WAB will help approximate the actual physical situation of the aquifer system; provide an understanding and analysis of the complex groundwater system of WAB; assess the groundwater flow characteristics of WAB and interpret the spatial distribution of the related parameters. After all, the development of the steady state model provides an idea about the water budget of the basin as a whole. This budget will provide details about water balance between the aquifer units as well and between the basin and its boundaries.

Then the next step was to develop the transient flow model with the objective to be used as a tool for planning and management of the water resources of the WAB.

The transient model developed in this project aims at checking that the water levels in observation wells correlate well with the computed levels of the model, and hence the calibration process, and to test the impact of future development and abstraction scenarios on current pumping in the four management zones of WAB including impacts on Israeli current abstractions.

1.2 Area

The Western Aquifer Basin is the largest of all groundwater basins in historical Palestine and a shared basin between Palestinians, Israelis and Egyptians (see **Table1.1**, **Figure 1.1**). The model area is around 6000 km² large, with roughly 30% inside the West Bank.

	Total area	Model area
West Bank	1720 km ²	1720 km ²
Israel	7438 km ²	4315 km ²

 Table 1.1
 Size of the Western Aquifer Basin and model areas

Figure 1.1 Location map of the Western Aguifer Basin

Almost 5000 km² lie in the Egyptian side, however with both little recharge and outflows. The total abstractions in Northern Sinai sum up to 9 MCM/yr only (personal correspondence with the Egyptian Institute of Groundwater). This amount comprises of the Western Basin and other aguifers. However, the exact recharge and discharge within the political borders of Egypt is beyond the scope of the Sustainable Management of the West Bank and Gaza Aquifers, SUSMAQ, Project.

The basin extends around 235 km from Mount Carmel in the North to Northern Sinai in the South and between 70 and 30 km from the Mediterranean coast in the West to the heights

-25

of the West Bank in the East (see **Figure 1.1**). In the following, if not stated otherwise, the term WAB will refer to the model area of the Western Aquifer Basin.

1.3 Climate

The climatic zones range from sub-humid Mediterranean climate conditions (more than 700 mm annual rainfall) to arid desert conditions in the Sinai. The ground elevation lies between sea level and 1000 m above sea level in the Hebron area.

1.4 Geography

The Western Aquifer Basin covers a wide range of different landscapes and topographic environments. It reaches from sea level at the Mediterranean coast in the west up to 983 m near Hebron.

Most of the area of the Western Aquifer Basin is located in Israel; the fourteen regions of the WAB are fully or partly covered by the western aquifer basin, (see **Figure 1.3**). Three of these regions lie in the West Bank. Therefore, here the Palestinian names will be used.

Starting in the west, there are three regions along the Mediterranean coast:

- The Negev coastal plain
- The Southern coastal plain and
- The Central coastal plain (or in some texts: Northern coastal plain)

Adjacent to the east follow the six regions (from north to south):

- The Ramot Menashe region
- The Um El-Fahm region
- The Nablus region
- The Northwestern West Bank
- The Shefela (or Hashephela) region in the central and southern foothills and
- The Negev western foothills

Three more regions partly reach beyond the eastern border of the basin:

- The Central and Southern West Bank, or Jerusalem and Hebron Mountains
- The Beer Sheva Valley and
- The Northern Negev

The whole area of the Western aquifer can be divided into three longitudinal strips of different elevations that match incompletely with the above- mentioned regions: The coastal plain area, the foothill and lower slopes area and the upper slopes and mountain area. The coastal plain has a width range of 15-20 km with elevations between 0-100 meters above sea level. The foothills area has a width range between 3 and 15 km (see **Figure 1.2**).

The coastal plain lies at elevations between 0 and 100m asl., except for the Negev coastal plain that reaches up to 200m asl, (see **Figure 1.2**). The foothills rise from 100 m asl to around 300 m asl, and are followed to the east by the upper hills and mountain regions that reach up the highest point of 983m asl at the coordinates 158.3/110.55, near the spring Ein Ad-Deekeh, 2 km west northwest of Halhul.

Figure 1.3 Geographic regions of the Western Aquifer Basins (The thin dotted line delineates the geographical borders of the WAB.)

The different regions have been introduced and described in further detail in the Compiled Base Data Report of SUSMAQ.

The following **Table 1.2** summarizes the regions with the range of elevations.

West		Middle		East	
Region	Elevation	Region	Elevatio	Region	Elevation
			n		
Central	0-100			Ramot Menashe	100-300
Coastal Plain				Um El Fahm	100-<500
				Nablus	100-400
Southern Coastal	0-100	Hashephela foothills	100-450	Northwestern West Bank	100-700
Plain		Beer Sheva Valley	200-500	Jerusalem and Hebron Mountains	450-800
Negev Coastal Plain	0-200	Negev Western Foothills	20-400	Northern Negev	300-600

 Table 1.2 Regions and range of elevations (in m asl)

1.5 Geology

The range of age of the outcropping formations reaches from Lower Cretaceous to Holocene. The Lower Cretaceous formations of the Kurnub group are exposed as Aptian shale (Tammun) at the anticline axes and as Kurnub sandstone in the Negev. The aquifers of the Western Aquifer Basin (WAB) consist mainly of karstified limestone and dolomite of Upper Albian to Turonian. The two aquifers are separated by a Lower Cenomanian sequence of aquitard to aquiclude formations, known as Yatta formation in Palestinian terms and as Moza and Beit Meir formations in Israeli terms. Although Beit Meir contains portions of limestone and thus builds locally restricted perched aquifers, Yatta as a whole is simplified and modelled as one aquiclude on the regional level. The Holocene and recent alluvial deposits are found in large areas in the coastal plain. The outcrops of the aquifers are distributed as follows (**Table 1.3**):

Aquifer Formations	Outcrops	Aquitard Formations	Outcrops
Upper Albian	292.4 km ²	Lower Cenomanian	165.7 km ²
Middle Cenomanian-	1366 km ²	Senonian – Quaternary	4210.5 km ²
Turonian			

 Table 1.3
 Outcrop area of aquifers and aquitards

1.6 Water use

The water use is very heterogeneous, due to both natural and political reasons. While some areas are fully developed and even overexploited (coastal plain in central Israel), other areas rarely yield sufficient water in satisfying quality (Negev and Sinai). In the West Bank foothill region, Israel, through its occupation forces, imposes restrictions on the development of the important potential of the aquifer.

1.7 **Previous studies**

There are a number of modelling studies about the Western Aquifer Basin carried out by the Israelis (Bachmat, 1995; Guttman and Zukerman, 1995; Zukerman, 1999), but no comprehensive model has been undertaken on the Palestinian side as yet. However, the Israeli studies lack the following:

- Some of them, as Bachmat 1995, are based on a coarse grid of 25 km² cell size and therefore do not reflect realistic averages of the aquifer hydraulic and physical properties.
- Recharge estimates were made on generic relationships between rainfall and outflows (wells and springs). However, Guttman & Zukerman 1995, calibrated the results of these equations.
- There is a great distrust in the geometry and hydraulic connection between aquifers developed in most of these studies. (This is the case for the 25km² grid size of Bachmat 1995 but also of the other models.)
- The assumption of considering the WAB to have only one aquifer unit, as in most previous models, is not very convincing.
- In addition to the above inaccuracies in most of the Israeli conceptual and numerical flow models, the SUSMAQ team was not able to have free access to all the details of the Israeli studies on the WAB.

In this study we tried to address most of the shortcoming of the previous studies. This is the first Palestinian study that develops comprehensive numerical steady and transient flow models with great details on boundaries and geometry, hydraulic properties with assessment of the sustainable yield of the aquifers of the Western Basin.

Full report/document is not available online