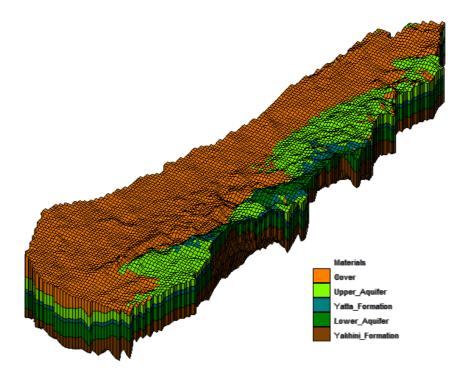
Palestinian National Authority Palestinian Water Authority

SUSMAQ

VIVERSITY OF

NERC British eological Survey

Department for


International Development

Sustainable Management of the West Bank and Gaza Aquifers

السلطة الوطنية الفلسطينية سلطة المياه الفلسطينية

Hydrogeochemistry of the Aquifers of the West Bank: Review and Interpretation of the Available Data with regard to Recharge, Water Quality and Groundwater Flow

Working Report SUSMAQ-REC # 18 V 0.1

> Prepared by: SUSMAQ TEAM

Palestinian Water Authority, Palestine Groundwater Systems and Water Quality Programme British Geological Survey, UK

February 2003

Disclaimer	Contact Details
This working report is an output from the Recharge Estimation Component, part of SUSMAQ project. Working reports are designed to present and to communicate the results of work on the SUSMAQ Project without delay. The findings, interpretations and conclusions expressed are those of the authors (the team) and should not be attributed to other collaborators on the SUSMAQ project. The project does not guarantee the accuracy of the data included in this publication. Boundaries, colours, denominations and other information shown in maps, figures, tables and the text does not imply any judgment on legal status of territory or the endorsement of boundaries. The typescript of this report has not been prepared in accordance with procedures appropriate to formal printed texts, and the partners and funding agency accept no responsibility for errors.	Professor Enda O'Connell Project Director University of Newcastle upon Tyne Tel: 0191 222 6405 Fax: 0191 222 6669 Email: P.E.O'Connell@ncl.ac.uk Eng. Fadle Kawash Deputy Chairman Palestinian Water Authority Ramallah, Palestine Tel:02 295 9022 Fax 02 2981341 Email: fkawash@pwa-pna.org Dr. Amjad Aliewi Operations and Technical Manager Team Leader, Hydrogeology and Flow Modelling Sunrise Building Al-Irsal Road Al-Bireh/Ramallah, Palestine Tel.02 298 89 40 Fax.02 298 89 41 e-mail: a.s.aliewi@susmaq.org
The susmaQ Project The aim of the project is to increase understanding of the sustainable yield of the West Bank and Gaza aquifers under a range of future economic, demographic and land use scenarios, and evaluate alternative groundwater management options. The project is interdisciplinary, bringing together hydrogeologists and groundwater modellers with economists and policy experts. In this way, hydrogeological understanding can inform, and be informed by, insights from the social sciences. The results of the study will provide support to decision- making at all levels in relation to the sustainable yield of the West Bank and Gaza aquifers. The project runs from November 1999 to October 2004, and is a partnership between the Palestinian Water Authority, University of Newcastle and the British Geological Survey. The project is funded by the United Kingdom's Department for International Development (DFID).	Recharge Estimation Component is part of the SUSMAQ project which aims at developing improved estimates of groundwater recharge to the West Bank Aquifers with emphasis on the Western Aquifer Basin. This will be achieved through developing object oriented model for recharge and studying the hydrochemistry of the aquifers.
Bibliographical Reference	Feedback
This report should be referenced as: SUSMAQ (2003). Hydrogeochemistry of Aquifers of the West Bank: Review and Interpretation of the available Data with regard to Recharge, Water Quality and Groundwater Flow. Working report No.: SUSMAQ-REC#18V0.1. Sustainable Management for the West Bank and Gaza Aquifers, Palestinian Water Authority (Palestine) and University of Newcastle upon Tyne (UK). <i>Author</i> : Dr. W George Darling, British Geological Survey <i>Contributors</i> : Dr. Denis Peach, Dr. Andrew Hughes, Dr Nicholas Robins, British Geological Survey	This is Version 0.1 of the Report, "Hydrogeochemistry of Aquifers of the West Bank: Review and Interpretation of the available Data with regard to Recharge, Water Quality and Groundwater Flow". The Recharge Estimation Team welcomes feedback, both positive and negative! Please, tell us what you think about the ideas and issues raised in this report by contacting the team at one of the addresses above. Your feedback will be appreciated and is necessary for updating and correcting this report in another version.

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham and Edinburgh; see contact details below or shop online at www.thebgs.co.uk

The London Information Office maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG

O115-936 3241
 Fax 0115-936 3488
 e-mail: sales@bgs.ac.uk
 www.bgs.ac.uk
 Shop online at: www.thebgs.co.uk

Murchison House, West Mains Road, Edinburgh EH9 3LA

☎ 0131-667 1000
 Fax 0131-668 2683
 e-mail: scotsales@bgs.ac.uk

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London SW7 2DE

Ŧ	020-7589 4090	Fax 020-7584 8270
Ŧ	020-7942 5344/45	email: bgslondon@bgs.ac.uk

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

a 01392-445271 Fax 01392-445371

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

2 028-9066 6595 Fax 028-9066 2835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

2 01491-838800 Fax 01491-692345

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

01793-411500
www.nerc.ac.uk

Fax 01793-411501

Contents

Co	Contents		
1	Intr	roduction	1
2	Wat	ter Quality Records	2
	2.1	Background	2
	2.2	Recent water quality	2
	2.3	Water quality trends	3
3	Hyd	lrogeochemistry on the Basin Scale	8
	3.1	Rainfall	8
	3.2	The unsaturated zone	9
	3.3	Surface runoff	12
	3.4	Subsurface hydrology	13
	3.5	Groundwater discharge	24
4	Sun	nmary and Recommendations	28
5 References		30	

FIGURES

Figure 1	Map showing the distribution of groundwater nitrate, sulphate and TDS across the West Bank. Colour coding of concentration ranges as indicated. Based on most recent (1999 or 2000) data from PWA (2001)
Figure 2	Map showing the water-quality implications of the distribution of nitrate in the Western Basin, based on time-series data (PWA, 2001) with selected examples plotted; these include TDS data (LH axis) and nitrate and sulphate data (RH axis), all measurements in mg/l. Site codes commencing with letters refer to springs. All wells and springs tap the Mountain Aquifer. Colour codes as indicated, spring sources denoted by triangles
Figure 3	Map showing distribution of nitrate in the Northeastern Basin, based on time- series data (PWA, 2001) with selected examples plotted; these include TDS data (LH axis) and nitrate and sulphate data (RH axis), all measurements in mg/l. Site codes commencing with letters refer to springs. All wells and springs tap pre- Pleistocene formations, mainly the Palaeogene Jenin aquifer. Colour codes as indicated, spring sources denoted by triangles
Figure 4	Map showing the water-quality implications of the distribution of nitrate in the Eastern Basin, based on time series data (PWA, 2001) with selected examples plotted; these include TDS data (LH axis) and nitrate and sulphate data (RH axis), all measurements in mg/l. Although some wells and springs tap pre-Pleistocene formations, many are abstracting from the unconfined Pleistocene aquifer. Colour codes as indicated; spring sources denoted by triangles, Pleistocene aquifer wells by circles

- Figure 12 (a) Plot of molar K/Na vs easting demonstrates that some Pleistocene well and spring waters in the Eastern Basin may be obtaining extra potassium from fertiliser inputs. (b) Plot of Na/Ca vs easting demonstrates that some wells, particularly in the Eocene, show an increase in Na relative to Ca possibly reflecting a contribution from saline sources. Based on data from PWA (2001).19

1 Introduction

Understanding the nature of recharge, water quality and groundwater flow in the aquifers of the West Bank requires a rounded appreciation of their hydrogeology. This presents many challenges, partly because of the karstic or sub-karstic nature of some of the formations, but also because of the relative scarcity of data. Hydrogeochemistry in the wider sense (i.e. including isotope hydrology and geochemistry) has an important role to play in addressing both the resource and quality aspects of West Bank groundwater supply. In this way it can assist and inform the resource-based modelling that is required to support the sustainable management of the various aquifer units concerned.

The most basic use of chemistry is to investigate water quality, and this is one area where there is an abundance of basic data available in the form of PWA (2001). This includes some time-series data which allow conclusions to be drawn about long-term changes as well as the identification of pollution hotspots. More complex uses of chemistry data include examining processes of recharge, natural patterns of groundwater evolution, and identifying mixing between waters with different hydrochemical characteristics.

Progress beyond this requires the consideration of isotopic evidence in conjunction with hydrochemistry. While the PWA has not had routine access to such relatively sophisticated techniques, sufficient has by now been published by various researchers on isotopic studies in the West Bank and adjacent areas to begin to better understand problems such as mode(s) of recharge, water residence times, and groundwater mixing patterns.

This report represents a first attempt at synthesising and interpreting the available hydrogeochemical information for the West Bank as a whole. While many problem areas undoubtedly remain, it is hoped that the report will at least provide the basis on which further research can be developed and taken forward to enhance understanding of recharge and groundwater flow.

Full report/document is not available online