

Recharge modelling for the West Bank aquifers

Groundwater Systems and Water Quality Programme Commissioned Report CR/05/087

BRITISH GEOLOGICAL SURVEY

COMMISSIONED REPORT CR/05/087

Recharge modelling for the West Bank aquifers

Hughes A G and Mansour M M

The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty's Stationery Office. Ordnance Survey licence number GD 272191/1999

Key words

Recharge; Model; Objectoriented.

Front cover

Cover figure shows runoff routing for Natuf catchment model

Bibliographical reference

HUGHES A G AND MANSOUR M M. 2005. Recharge modelling for the West Bank aquifers. *British Geological Survey Commissioned Report*, CR/05/087. 90pp.

© NERC 2005

Keyworth, Nottingham British Geological Survey 2005

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham and Edinburgh; see contact details below or shop online at www.thebgs.co.uk

The London Information Office maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG

115-936 3241 Fax 0115-936 3488 e-mail: sales@bgs.ac.uk www.bgs.ac.uk Shop online at: www.thebgs.co.uk

Murchison House, West Mains Road, Edinburgh EH9 3LA

Fax 0131-668 2683 e-mail: scotsales@bgs.ac.uk

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London **SW7 2DE**

2 020-7589 4090 2020-7942 5344/45

2 0131-667 1000

Fax 020-7584 8270 email: bgslondon@bgs.ac.uk

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

☎ 01392-445271 Fax 01392-445371

Geological Survey of Northern Ireland, 20 College Gardens, **Belfast BT9 6BS 2** 028-9066 6595 Fax 028-9066 2835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

01491-838800 Fax 01491-692345

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU **2** 01793-411500 Fax 01793-411501

www.nerc.ac.uk

Contents

Со	ntent	S	i
For	ewor	d	v
Acknowledgements			
Exe	ecutiv	ve Summary	vii
1	Intr	oduction	1
2	Rec	harge processes in the West Bank	2
	2.1	Introduction	2
	2.2	Summary of recharge processes	2
	2.3	Conceptual model of recharge processes in the Wadi Natuf	5
	2.4	Conceptual model of recharge processes in the West Bank	9
	2.5	Justification of modelling approaches	14
	2.6	Previous estimates of recharge	15
3	Dese	cription of object-oriented recharge model	16
	3.1	Introduction	16
	3.2	Description of the objects and their framework	16
	3.3	Data requirements	28
	3.4	Output files	29
4	Арр	lication of the Recharge Model to the Natuf Catchment	31
	4.1	Introduction	31
	4.2	Data requirements	31
	4.3	Model results	38
5	Арр	lication of the Recharge Model to the West Bank	52
	5.1	Introduction	52
	5.2	Data requirements	53
	5.3	Model Results	59
6	Summary and Conclusions		75
	6.1	Application of recharge model and discussion of results	75
	6.2	Recommendations for further work	77
Ref	eren	ces	78

APPENDICES

- 1 Hydrograph analysis
- 2 Description of SCS D-hydrographs
- 3 Relationship of model grid with GIS grid
- 4 Model output for the West Bank recharge model

FIGURES

Figure 1	Summary of recharge processes operating in the West Bank
Figure 2	Geological map of the Natuf catchment
Figure 3	Springs issuing from Soreq due to alternate layering of marl bands
Figure 4	Recharge processes on karstic terrain
Figure 5	Relationship between grids in the recharge model
Figure 6	Relationship between recharge calculation nodes
Figure 7	Framework of recharge model
Figure 8	Outline of the calculation procedure
Figure 9	Relationship between actual evaporation and potential evaporation
Figure 10	Flowchart for SMD method of recharge calculation
Figure 11	Flow chart for the proposed method of recharge calculation
Figure 12	Framework for recharge calculation in urbanised areas
Figure 13	Model grid, wadis and runoff routing for the Wadi Natuf catchment
Figure 14	Landuse for the Natuf catchment
Figure 15	Location of main spring groups in Wadi Natuf
Figure 16	Stream flows with wadi losses equal to 0.0 and groundwater velocity of 5 m $d^{\text{-}1\text{-}}$ 39
Figure 17	Stream flows with wadi losses equal to 0.01 and groundwater velocity of 5 m $d^{\text{-1}}$ 39
Figure 18	Stream flows with wadi losses equal to 0.05 and groundwater velocity of 5 m $d^{\text{-1}}$ 40
Figure 19	Stream flows with wadi losses equal to 0.0 and groundwater velocity of 20 m $d^{\text{-}1}40$
Figure 20	Stream flows with wadi losses equal to 0.01 and groundwater velocity of 20 m $d^{\text{-}1}40$
Figure 21	Stream flows with wadi losses equal to 0.05 and groundwater velocity of 20 m $d^{\text{-}1}$ 41
Figure 22	Stream flows with wadi losses equal to 0.05 and groundwater velocity of 20 m $d^{\text{-}1}$ 42
Figure 23	Stream flows with wadi losses equal to 0.05 and groundwater velocity of 20 m $d^{\text{-1}}$ 43

CR/05/087

Figure 24	The rainfall stations and the corresponding Theissen polygons in Natuf area 45
Figure 25	Location of Shuqba and Beitillu theta probes in Natuf area
Figure 26	Theta probe results at Beitillu and Shuqba 49
Figure 27	Numerical results of the soil moisture deficit at Beitillu and Shuqba using the SMD recharge calculation method
Figure 28	Comparison between the numerical soil moisture deficit and field soil moisture contents at Beitillu
Figure 29	Comparison between the numerical soil moisture deficit and field soil moisture contents at Beitillu
Figure 30	Numerical results of the soil moisture deficit at Beitillu and Shuqba using the wetting threshold recharge calculation method with $WT = 30 \text{ mm} \dots 51$
Figure 31	The West Bank aquifer basins
Figure 32	Model grid, wadis and runoff routing for the West Bank model54
Figure 33	Spatial distribution of recharge resulting from the application of the wetting threshold method. (a): $WT = 20 \text{ mm.}$ (b): $WT = 40 \text{ mm.}$
Figure 34	Spatial distribution of recharge resulting from the application of the SMD method 61
Figure 35	Spatial distribution of recharge with the inclusion of urban areas. (a): SMD 63
Figure 36	LTA results with irrigation added. (a): SMD. (b): WT=30 mm64
Figure 37	Spatial distribution of recharge resulting from correction of monthly PE values. 65
Figure 38	Initial calculation method for wadi recharge67
Figure 39	Updated calculation method for wadi recharge67
Figure 40	Long term average distribution of rainfall69
Figure 41	Zones where the WT and SMD recharge calculation methods area applied 69
Figure 42	The distribution of rainfall stations in the West Bank area

TABLES

Table 1	Potential for recharge in West Bank	7
Table 2	Summary of the main soil types in the West Bank	•••••
Table 3	Landuse distribution in the West Bank (after ARIJ, 1998)	13
Table 4	Previous recharge estimates (from McKenzie, 2001)	15
Table 5	Monthly PE for Hebron and Ramallah	
Table 6	Main spring groups in the Wadi Natuf	35
Table 7	Long term average recharge results over Wadi Natuf ($V_{GW} = 5 \text{ m d}^{-1}$)	
Table 8	Average recharge values for winter 2003/4	46
Table 9	Monthly PE for evaporation stations in the West Bank	55

Table 10 C and D values of the SMD method based on landuse type (Lerner et al., 1990)	. 56
Table 11 Monthly variation of C and D values (Lerner et al., 1990)	. 56
Table 12 Water supply for urban areas	58
Table 13 Distribution of the yearly-applied irrigation over the dry season months	. 58
Table 14 Irrigation areas in the West Bank	. 59
Table 15 Total long-term average recharge values	. 59
Table 16 Recharge values per basin	62
Table 17 Measured flows at wadi gauging stations	. 65
Table 18 Modelled flows for WT method (WT = 30 mm)	66
Table 19 Modelled flows for SMD method	
Table 20 Comparison between the long term average results calculated using the old and updated model codes (Area ~ 6450 km ²).	the 67
Table 21 Historical LTA recharge values	72
Table 22 LTA recharge values using predicted rainfall data for the years 2001-2026	74

Foreword

The report has been prepared by British Geological Survey (BGS) for the Department for International Development (DFID) funded project "Sustainable Management of the West Bank and Gaza Aquifers" (SUSMAQ).

The primary aim of the SUSMAQ project is to support the Palestinian Water Authority (PWA) by improving the current understanding of the flow system of the aquifers of the West Bank and Gaza, and to assess the sustainability of the aquifers under a variety of economic, demographic and land use scenarios in terms of meeting the consequent water demand from aquifers. This is achieved through a set of management tools based on mathematical simulation of flow in the aquifers, a component of which is the recharge modelling.

Acknowledgements

As for all work, there are a number of people to acknowledge for the work undertaken in this report including PWA staff and the SUSMAQ team in Ramallah, who have provided data and contributed ideas to the development of the model and Clemens Messerschmid for his tireless field work and production of reports.

BGS staff members are also acknowledged for their contributions; Nick Robins and Denis Peach for their hydrogeological experience, Chris Jackson for his patient answering of objectoriented queries, Andrew Mckenzie, Brighid O Dochairtaigh and Helen Rutter for their prior knowledge of the West Bank and Roger Calow and Alan MacDonald for a glimpse into the softer side.

Executive Summary

Recharge can take two main forms, direct recharge from rainfall infiltrating the ground or indirect recharge from leakage from wadi beds. The recharge processes operating in the West Bank can be summarised as rainfall recharge, wadi recharge, urban recharge processes and irrigation losses. Rainfall recharge is the predominant form of recharge, whilst wadi recharge, urban and irrigation losses are only minor components. However, these minor components can be locally important.

The recharge processes operating in the Wadi Natuf catchment are varied and complex. The four main geological strata through which recharge takes place are:

- Jerusalam
- Upper Lower Beit Kahil
- Lower Beit Kahil
- Hebron

The main aquifer units are karstic which receive recharge once a wetting threshold is exceeded. This assumption is supported by field observations (Messerschmid, 2003) and a field experiment close to the study area (Lange et al., 2003). Other minor aquifers receive recharge and distribute water laterally to springs. Flow from springs, if not used for water supply or irrigation, can then be routed to other aquifer units or as loss from wadis.

High intensity rainfall can produce overland runoff and wadi flow. Flowing wadis loose water to all but the Yatta formation.

Recharge can, therefore, occur by two methods, direct infiltration from rainfall and from losses from wadi beds.

There are four main recharge processes operating in the aquifers of the West Bank;

- 1. Direct recharge from rainfall
- 2. Indirect recharge from wadi losses
- 3. Recharge from urban water supply and waste water processes
- 4. Recharge from irrigation losses

The difference between rainfall and potential evaporation, known as effective rainfall, is the main control on direct recharge from rainfall. Rainfall is greatest in the north and west whereas potential evaporation is the highest in the south and east. The greatest potential for rainfall recharge is, therefore, in the north and west. Soil cover also controls the amount of rainfall recharge and is highly variable over the West Bank. In particular, the main soil types have patchy coverage, over only 30-50 % of the ground surface, the rest being bare rock. The patchiness of the soil means that soil moisture is not developed in the same way as for soils with uniform coverage.

To determine the rainfall recharge mechanisms operating in the West Bank, a combination of factors such as rainfall, potential evaporation, soil cover, land use, etc need to be assessed. Combining these factors mean that recharge processes based on soil moisture are most likely to be operating in the north-west of the West Bank. Elsewhere, direct recharge will be based on how the soil and rocks combined as single system respond to the balance between rainfall and evaporation (e.g. Lange et al., 2003).

Indirect recharge occurs due to wadi flows over the whole of the West Bank. Runoff from intense rainfall events will collect in valley bottoms and create surface water flows. Recharge from wadi beds will form the predominant source of recharge in the south and east of the West Bank, where the climate is more arid.

Urban recharge processes reflect leakage from pipes and sewers and increased runoff from paved surfaces, roofs, roads, etc. The enhanced runoff in the urban environment is routed to wadis and enhances flows after rainstorms. This can increase indirect recharge from wadi beds.

Losses from irrigation systems can enhance recharge. The main areas for irrigation are the north-west of the West Bank, in the vicinity of Jericho and the Upper Jordan Valley.

A significant amount of work has been undertaken on calculating recharge to the aquifers in the West Bank and in the Western Aquifer Basin by measuring discharge and abstraction as a surrogate for recharge. However, most of the estimates rely on empirical relationships between annual rainfall and recharge. Estimates undertaken using an empirical method are not physically based, but nonetheless can be used as a guide to determine whether the recharge calculated by the modelling are realistic. The estimates for the Western Aquifer Basin are around 350 Mm³ a⁻¹ and 800 Mm³ a⁻¹ for the West Bank as a whole.

To enable recharge to be calculated using a physical basis over aquifer outcrops, a distributed recharge model has been developed and tested. An existing object-oriented groundwater flow model has been adapted from an existing code. An object-oriented approach was chosen to enable a range of recharge mechanisms to be incorporated easily into the model. Recharge is calculated at a node, which is held on a grid and enables a distributed recharge estimate to be undertaken. Four types of recharge node can be specified; soil moisture balance method, wetting threshold, urban recharge process and irrigation losses. In addition to these mechanisms, runoff routing to wadis and subsequent infiltration is implemented.

1 Introduction

This report describes the application of a distributed recharge model to the aquifers of the West Bank. An analysis of recharge, i.e. the quantity of water that infiltrates from the land surface to the aquifer, is an essential input for simulation of flow in the aquifers. Recharge is a complex process, but quantification is critical in order to understand the total water availability from the West Bank aquifers. To aid the quantification of recharge, a distributed recharge model has been developed using object-oriented techniques. This recharge model has been adapted from an existing code to include the recharge mechanisms observed in the West Bank. The model has been applied to two areas, the Wadi Natuf catchment, as a pilot application, and the main outcrops of the aquifers underlying the West Bank.

This report builds on previous work (McKenzie et al., 2001), which summarises the recharge processes operating in the West Bank aquifer and the previous estimates of recharge and presents data collected during a visit to the project office in Ramallah. The work on the Wadi Natuf catchment is helped by various field visit reports undertaken by the SUSMAQ team (e.g. Messerschmid, 2003).

Full report/document is not available online