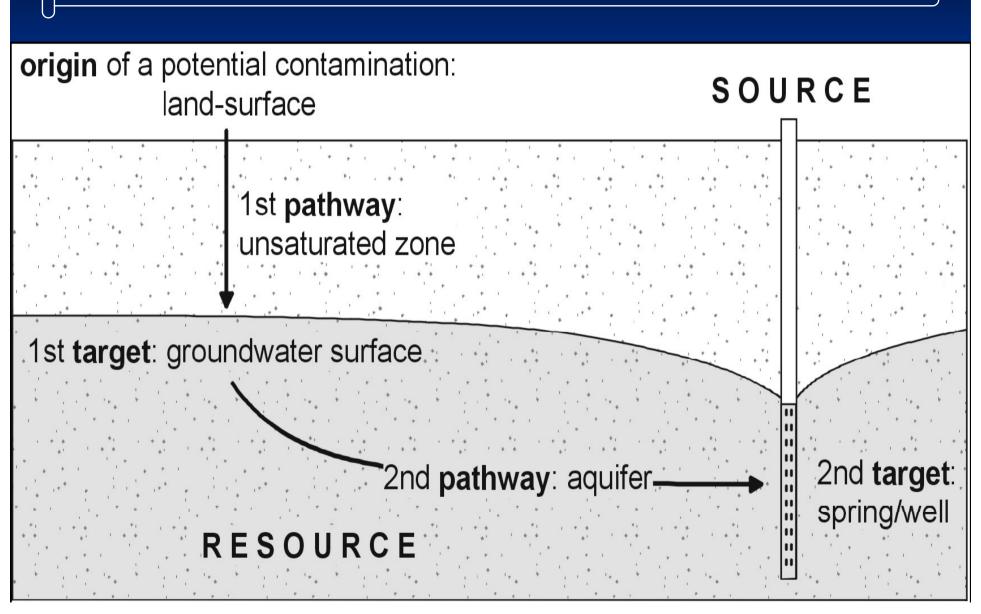
Vulnerability Mapping for the Protection of Carbonate (Karst) Aquifers (Ramallah-Al Bireh District)

Eng. Amjad Assi

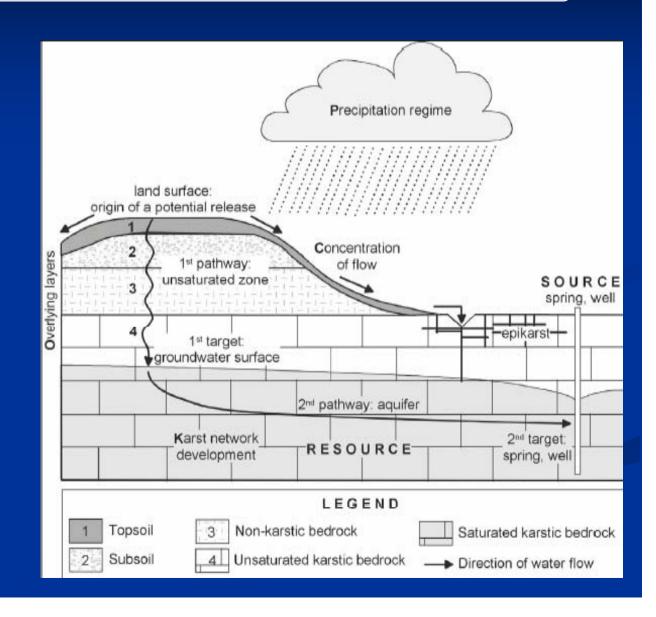
House of Water and Environment

May, 2007


INTRODUCTION

- Water resources are vitally important for the future of humankind.
- Groundwater from karst aquifers is among the most important drinking water resource in the West Bank.
- The protection of groundwater within karst aquifers to assure its quality for potable use should be one of the Palestinians priorities.
- The term 'vulnerability' is not restricted to groundwater but is used in a wide sense to describe the sensitivity of whatever to any kind of stress.
- The aim from this lecture is to present an integrated method that addresses the question of groundwater vulnerability and risk in karst environments.

Conceptual
Model of a
Karst Aquifer


The Origin-Pathway-Target Model

General Concept of the PI Method

It is a GIS-based approach.

It is based on an origin-pathway-target model.

PI - Method

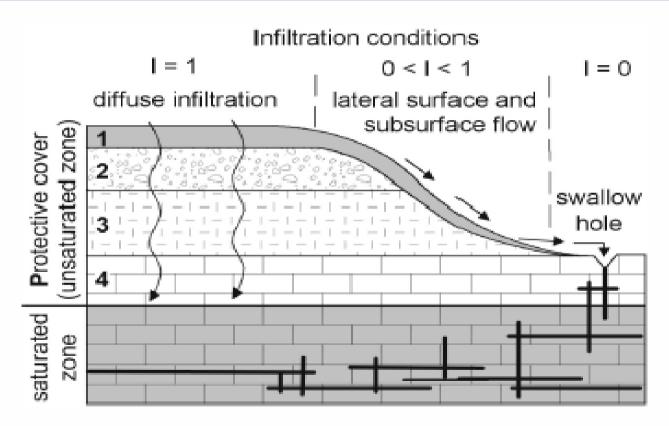
(P) – Protective Cover

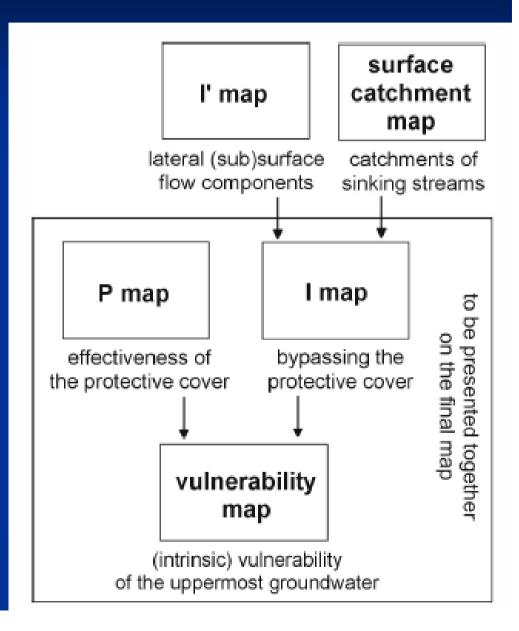
- Thickness,
- Hydraulic Conductivity,
- Degree of Karstification,
- Joints / faults.

(I) – Infiltration Conditions

- Type of infiltration,
- Flow concentration and degree of by-passing the protective cover.

- **P- Factor**: the effectiveness of the production cover above the groundwater table.
- I- Factor: reduction of the protection cover by the bypassing flow.




Fig. 42: Illustration of the PI method: The P factor takes into account the effectiveness of the protective cover as a function of the thickness and hydraulic properties of all the strata between the ground surface and the groundwater surface. The protective cover consists of up to four layers: 1. topsoil, 2. subsoil, 3. non karst rock, 4. unsaturated karst rock. The I factor expresses the degree to which the protective cover is bypassed by lateral surface and subsurface flow, especially within the catchments of sinking streams.

Simple Flow Chart for the PI Method

The vulnerability map is obtained by intersecting the P map with the I map.

The P map shows the effectiveness of the productive cover as a function of the thickness and permeability of all the strata above the ground water surface.

The I map shows the degree to which the protective cover is bypassed. It is obtained by intersecting the map showing the catchment areas of the sinking streams with the so-called I' map, which shows the distribution of lateral, surface and subsurface flow.

P-Map

Topsoil - T

eFC [mm] up to 1 m depth	Т
> 250	750
> 200-250	500
> 140-200	250
> 90-140	125
> 50-90	50
< 50	0

Recharge - R

	,
Recharge	R
[mm/y]	
0-100	1.75
>100-200	1.50
>200-300	1.25
>300-400	1.00
>400	0.75

Subsoil - S

Type of subsoil (grain size distribution)	S	Type of subsoil (grain size distribution)	S
clay	500	very clayey sand, clayey sand,	140
loamy clay, slightly silty clay	400	loamy silty sand	
slightly sandy clay	350	sandy silt, very loamy sand	120
silty clay, clayey silty loam	320	loamy sand, very silty sand	90
clayey loam	300	slightly clayey sand, silty sand,	75
very silty clay, sandy clay	270	sandy clayey gravel	
very loamy silt	250	slightly loamy sand, sandy silty gravel	60
slightly clayey loam, clayey silty loam	240	slightly silty sand, slightly silty sand with gravel	50
very clayey silt, silty loam	220	sand	25
very sandy clay, sandy silty loam,	200	sand with gravel, sandy gravel	10
slightly sandy loam, loamy silt, clayey silt		gravel, gravel with breccia	5
sandy loam, slightly loamy silt	180	non-lithified volcanic material (pyroklastica)	200
slightly clayey silt, sandy loamy silt, silt,	160	peat	400
very sandy loam		sapropel	300

Lithology - L

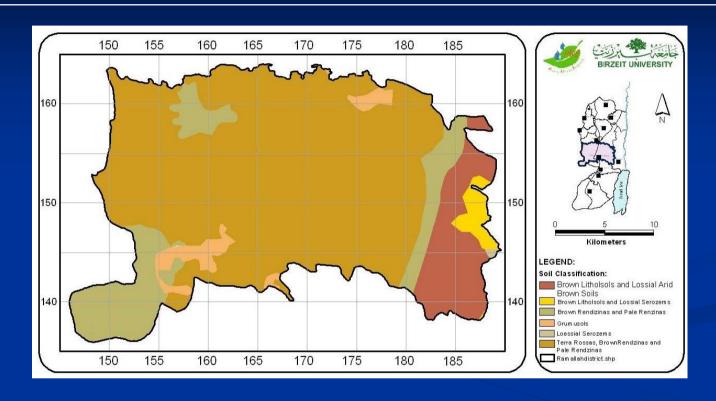
	-4	
⊢ra	cturir	าa - F

3,			3
Lithology	L	Fracturing	F
claystone, slate,	20	non-jointed	25.0
marl, siltstone		slightly jointed	4.0
sandstone, quarzite,	15	moderately jointed, slightly karstified	1.0
volcanic rock		or karst features completely sealed	
plutonite, metamorphite		moderately karstic or karst	0.5
porous sandstone,	10	features mostly sealed	
porous volcanic rock (e.g. tuff)		strongly fractured or strongly	0.3
conglomerate, breccia,	5	karstified and not sealed	
limestone, dolomitic rock,		Epikarst strongly developed, not sealed	0.0
gypsum rock		not known	1.0

Thickness of each stratum in [m] - M

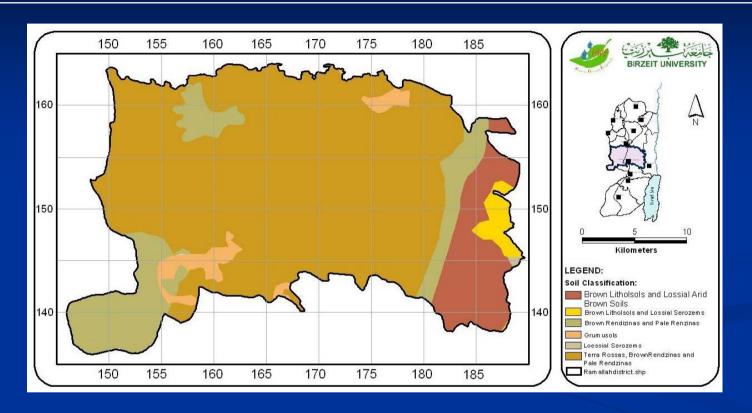
Bedrock - B
B = L · F

Artesian pressure A 1500 points


Total protective function PTS

$$P_{TS} = \left[T + \left(\sum_{i=1}^{m} S_i \cdot M_i + \sum_{j=1}^{n} B_j \cdot M_j\right)\right] \cdot R + A$$

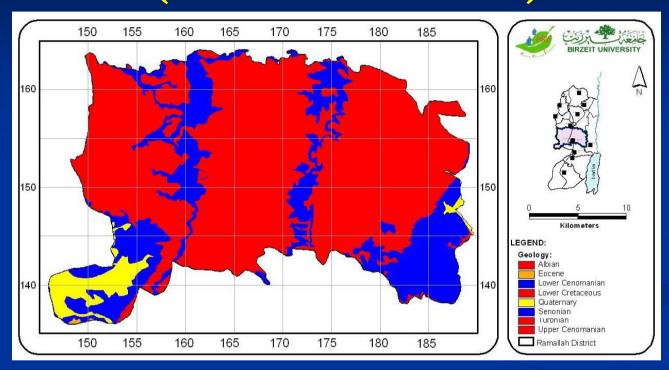
P-factor score P_{TS} effectiveness example of protective cover 0-2 m gravel 0-10 very low 1 2 >10-100 low 1-10 m sand with gravel 2-20 m slightly silty sand 3 >100-1000 medium >1000-10000 high 4 2-20 m clay >10000 5 > 20 m clay very high


P-map

Top Soil – (T-Factor)

Soil type	Measured / Estimated FC (mm/m)	Weighted Value (T)
Terra Rossa, Brown Rendzinas and Pale Rendzinas	446	750
Brown Rendzinas and Pale Rendzinas	334	750
Grumusols	460	750
Brown Lithosols and Loessial Serozems	90-140	125
Brown Lithosols and Loessial Arid Brown Soil	140-200	250
Loessial Serozems	140-200	250

Sub-soil (S-Factor)


Soil type	Sub-soil type	Weighted Value (S)
Terra Rossa, Brown Rendzinas and Pale Rendzinas	Clay	500
Brown Rendzinas and Pale Rendzinas	Clayey loam	300
Grumusols	Clay	500
Brown Lithosols and Loessial Serozems	Slightly clayey sand	75
Brown Lithosols and Loessial Arid Brown Soil	Loamy	250
Loessial Serozems	Slightly clay	320

Peri	od		Age	Graphic Log	Typical Lithology	Formation (West Bank Terminology)	Sub- Formation	Group	Sy	mbol	Formation (Israeli Terminology)	Hydro- stratigraphy	Typical Thickness (m)	
-		Holoce	ene	2 2 2	Nari (surface crust) and alluvium Gravels and fan deposits	Alluvium			Qh-a		Alluvium	Local Aquifer	0 - 100	
Ounteman		Pleisto	cene	0.0.0.	Thinly laminated marl with gypsum bands and poorly sorted gravel and pebbles	Lisan			Ор⊣		Lisan\Kurkar Group	"Aquitard"	10 - 200	
	Neogene	Mioce	ne		Conglomerates, marl, chalk clay and limestone	Beida			Tmp-b		Saqiye Group	Local Aquifer	20 - 200	
-			- 3		Nummulitic reefal Limestone		Jenin 4			Te-j4				
- 1	릷	Eocen	е		Nummulitic bedded Limestone	Jenin	Jenin 3		T-1	Te-j3	'Avedat	Aquifer		
-	Paleog	(Lowe	r-		Nummulitic Limestone,Chalk	John	Jenin 2	Jenin	Te-j	Te-j2	Group	Addisor	90 - 670	
-	82	Middle	3)		Chalk ,Nummulitic Limestone	1	Jenin 1			Te-j1				
	ı	Paleoc	ene	1111	Mari,Chalk	Khan				Tanza P		Aquitard		
Т	\neg		strich- Danian	1 1 1 1 1	Chalk ,Marl	Al-Ahmar		authorized to the	retering the	GRENOV. DRVE.	Ks-ka	Mt.Scopus	(Local Aquifer)	40 - 150
П	- 1		panian	+ + +	Main Chert ,Phosphate	Wadi Al-Qilt	1	Nablus	Ks-n	Ks-aq	Group	(Lood) / Iquiloly	10 - 120	
П	Į,	Coni	ancian- tonian	+++++	Chalk and Chert	Abu Dis	1			Ks-ad	4-50-7-5-50	Aquiclude	0 - 450	
-	1		Section 1	J-ブ J-	White Limestone stilolithes		Upper	W-1		Kc-ju	c-ju Bine	Upper		
-	اچ	Turoni	an	4747	Limestone and Dolomite Yellow thin bedded Limestone	Jerusalem	Middle Lower	1	Kc-j	Kc-im Kc-il	Bina		40 - 190	
Opper	흥[1	5-5-5	Dolomite,soft		Upper			Kc-bu	Weradim			
		1	a	Upper		Chalky Limestone,Chalk	Bethlehem	Lower		Kc-b	Kc-bl	Kefar Sha'ul	Aquifer	50 - 210
Cleraceous		Cenomanian	1		Karstic Dolomite	Hebron		Ramallah	Ko-h		Amminadav	auffer Svs	65 - 160	
₹	- 1		OWE	1-11-1	Yellow marl	Yatta	Upper	(West	Ко-у	Kc-y2	Moza	"Aquitard"	50 - 125	
1	_		2	1-1-1-1	Lime & Dolostone,Chalk,(Clay)	T diad	Lower		гас-у	Kc-y1	Beit Meir		30 - 123	
-	- 1		- 6	77-77	Reefal Limestone	Upper	UBK2	Bank)		Ka-ubk2	bk2 Kesalon	1 1	10 - 20	
١		Albian			Dolomite Limestone, interbedded with Marl	Beit Kahil	UBK1		Ka-ubk	Ka-ubk1	Soreq		60 - 130	
-	- 1			3333	Dolomite		UBK2			Ka-lbk2		Aquifer	40 - 90	
	Lower				Karstic Limestone	Lower Beit Kahil	LIBK1		Ka-lbk	Ka-lbk1			100 - 160	
	5				Marl ,marly nodular Limestone	Qatana			Ka-q		Qatana	Aquitard	42	
١			SWAKAN.		Marly Limestone and Limestone	Ein Qinya		Kobar	Ka-eq		Ein Qinya	Local Aquifer	55	
-				1-1-1-1	Shale	Tammun			Ka-t		Tammun	Aquiclude	300+	
	- 1	Aptian			Shale and Limestone	Ein Al-Assad		ė.	Ka-ea	Į. J.			20+	
-	L		- 8	#1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Marly Limestone,sandy	Nabi Said			Ka-ns				20+	
		Neoco	mian	/	Sandstone	Ramali		Kurnub	Kn-r		Hatira	Aquifer	70+ 35	
Jurassic		Oxford	ian		Volcanics Marl interbedded with chalky limestone	Tayasir	Upper Maleh	-	Kn-t Jo-m	Jo-um	'Arad	Aquitard	100 - 200	
1				111111	Dolomitic limestone, jointed and karstic	Maleh	Lower Maleh	0.00	50111	Jo-lm	Group	Aquifer	50 - 100	

Stratigraphic Section of the West Bank

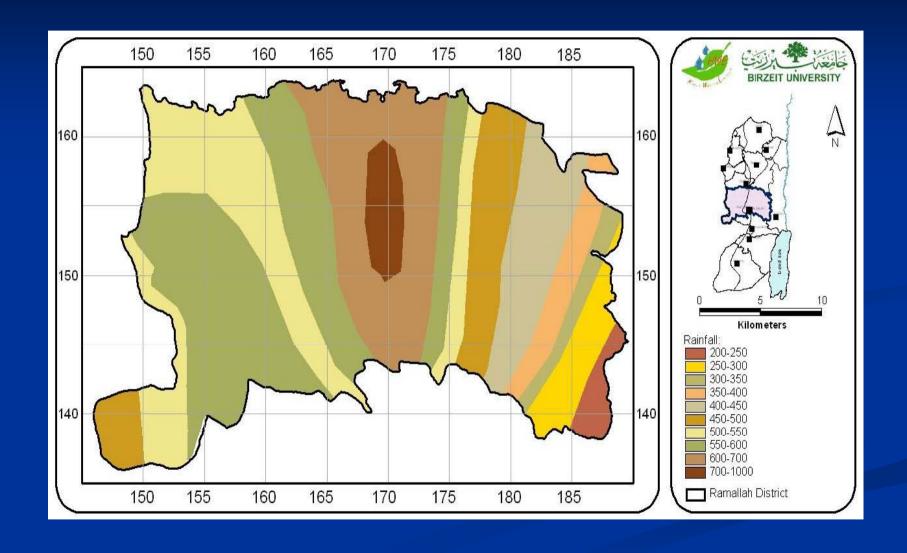
LEGEND 222 Dolomite Megafauna Sandstone Limestone Flint concretions v v v v Volcanics --- Marl _ I Chalk Relatively Permeable 0-0-0 Conglomerate Nari Relatively Impermeable

Lithology and Fracturing (L & F – Factors)

Lithology	Lithology Value	Fracturing Value
	(L)	(F)
Nari (surface crust) and alluvium gravels and fan deposits	5	4
Conglomerates, marl, chalk, clay and limestone	5	20
Reefal limestone, Nummulitic limestone and chalk	5	0.5
, chalk and chert	20	25
White limestone, stilolithes dolomite and thin bedded limestone	5	0.5
Karstic dolomite, dolomite, chalky limestone	5	0.3
Limestone and dolostone, chalk	5	0.5
Reefal limestone, karstic limestone, dolomite, dolomite limestone	5	0.3

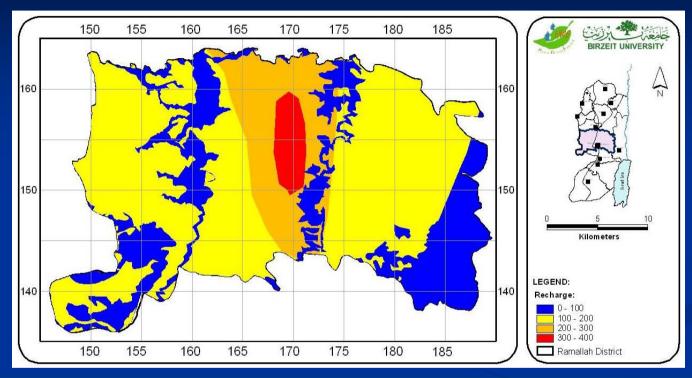
Groundwater Recharge – (R-Factor)

When the geological formations that form the main aquifers are outcropping, the following Rainfall-Recharge equations were applied.


R=0.6 (P - 285)
$$P > 700 \text{ mm}$$

R=0.46 (P - 159) $700 \text{ mm} > P > 456 \text{ mm}$
R=0.3 (P) $456 \text{ mm} > P$

where:

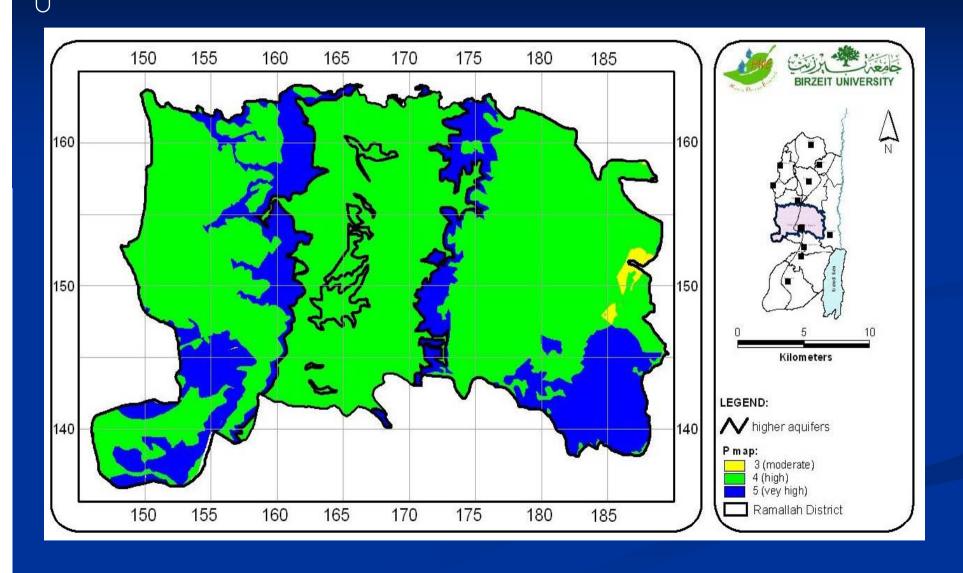

R = Recharge from rainfall in mm/yr

P = Annual rainfall in mm/yr.

Rainfall

Groundwater Recharge – (R-Factor)

Mean annual rainfall	Recharge	R value
(mm)	(mm/yr)	
200 – 250	60 – 75	1.75
250 – 300	75 – 90	1.75
300 - 350	90 – 100	1.75
350 – 400	105 – 120	1.5
400 - 450	120 – 135	1.5
450-500	135 – 157	1.5
500-550	157 – 180	1.5
550-600	180 - 200	1.5
600-700	200 – 250	1.25
700-1000	250 - 430	1.00


P-Map

Finally, P-map was prepared based on COST 620 mathematical equations as shown below.

$$P_{TS} = \left[T + S.M + \left(\sum_{i=1}^{n} B_i \times M_i \right) \right] \times R + A$$

The value P_{TS} was calculated for each cell by using the previous described parameters maps, Hence, P-map is grid map with cell size (20m X 20m) where each has its own P_{TS}. According to the adapted P classification, It was found that about 5 km² (0.6% of total area) is classified as moderate protective, and 637 km² (76.7% of total area) is high protective whereas 189 km² (22.7% of total area) is very high protective areas.

P-Map

1st Step: Determination of the dominant flow process

		Depth to low permeability layer					
		< 30 cm 30-100 cm > 100 cm					
Saturated	> 10 ⁻⁴	. , ,	Type C	Type A			
hydraulic >	10 ⁻⁵ -10 ⁻⁴		Type B				
conductivity>	10 ⁻⁶ -10 ⁻⁵	Type E					
[m/s]	< 10 ⁻⁶	Type F					

2nd Step: Determination of the l'-factor

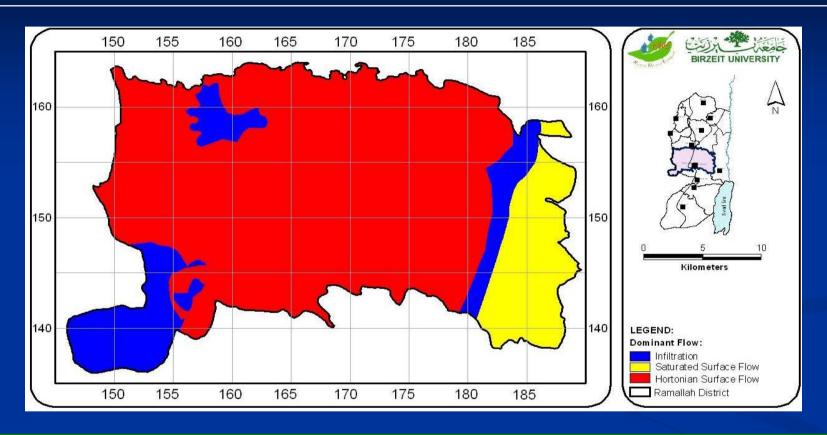
Forest							
dominant	flow	Slope					
proces	ss	< 3.5 %	3.5 - 27 %	> 27 %			
infiltration	Type A	1.0	1.0	1.0			
subsurface	Type B	1.0	0.6				
flow	Type C	1.0	0.6				
surface	Type D	0.8	0.6	0.4			
flow	Type E	1.0	0.6	0.4			
	Type F	8.0	0.4	0.2			

Field/Meadow/Pature						
dominant	flow		Slope			
proces	ss	< 3.5 %	3.5 - 27 %	> 27 %		
infiltration	Type A	1.0	1.0	8.0		
subsurface	Type B	1.0	0.6	0.4		
flow	Type C	1.0	0.4	0.2		
surface	Type D	0.6	0.4	0.2		
flow	Type E	0.8	0.4	0.2		
	Type F	0.6	0.2	0.0		

3^d Step: Determination of the I-factor

	Surface Catchment Map	l' factor					
		0.0	0.2	0.4	0.6	0.8	1.0
а	swallow hole, sinking stream and 10 m buffer	0.0	0.0	0.0	0.0	0.0	0.0
b	100 m buffer on both sides of sinking stream	0.0	0.2	0.4	0.6	0.8	1.0
С	catchment of sinking stream	0.2	0.4	0.6	0.8	1.0	1.0
d	area discharging inside karst area	0.4	0.6	8.0	1.0	1.0	1.0
е	area discharging out of the karst area	1.0	1.0	1.0	1.0	1.0	1.0

I-map


I-Map

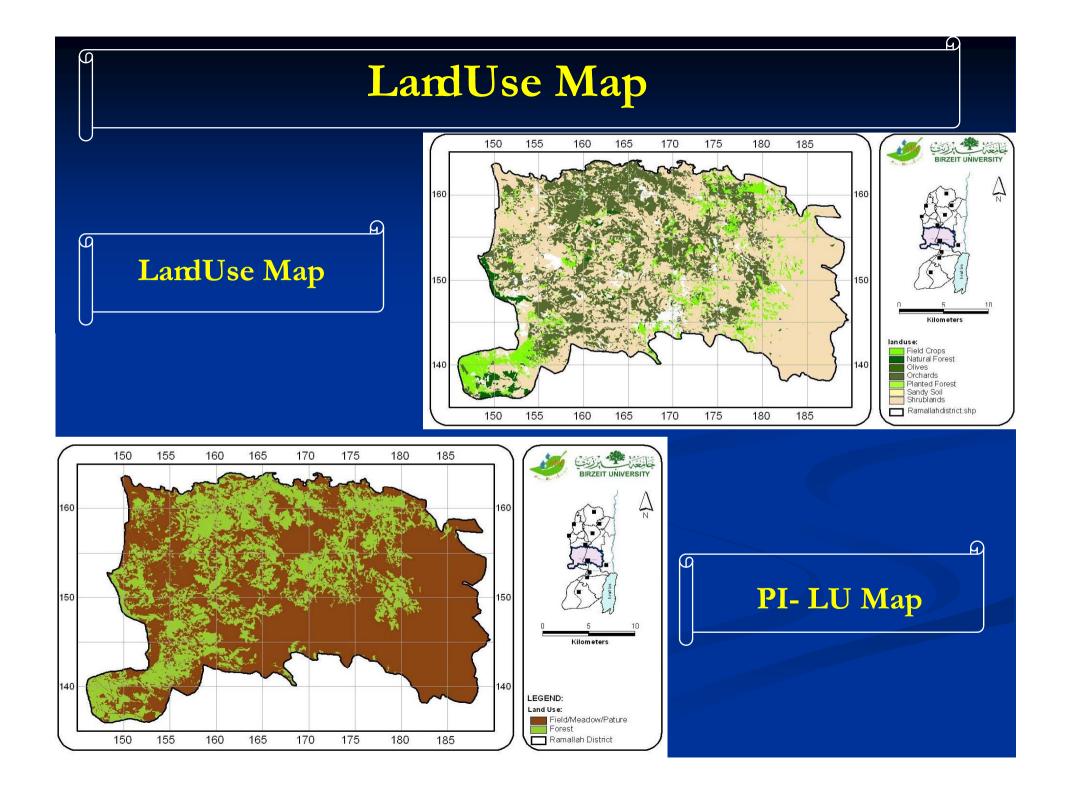
The dominant flow process is assessed on the basis of the top soil permeability and the presence of low permeable layers.

1st Step: Determination of the dominant flow process

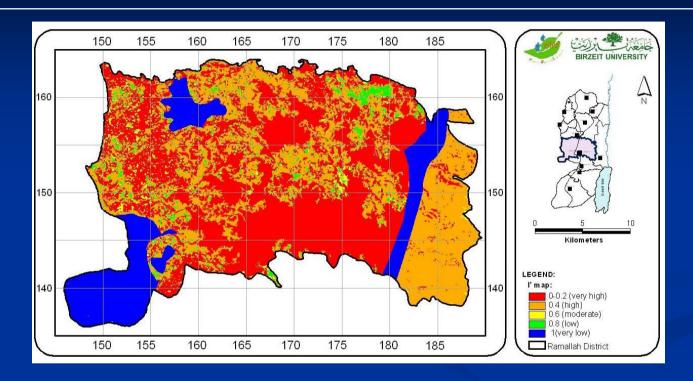
		Depth to low permeability layer					
		< 30 cm	30-100 cm	> 100 cm			
Saturated	> 10 ⁻⁴	7 1	Type C	Type A			
hydraulic >	10 ⁻⁵ -10 ⁻⁴		Type B				
conductivity>	10 ⁻⁶ -10 ⁻⁵	Type E					
[m/s]	< 10 ⁻⁶	Type F					

- The dominant flow process is assessed on the basis of the top soil permeability and the presence of low permeable layers.
- Type A Infiltration and subsequent percolation.
 - Type B Fast subsurface storm flow.
 - Type C Very fast subsurface flow.
 - Type D Saturated surface flow.
 - Type E Hortonian surface flow rarely (only during storm rainfall).
 - Type F Hortonian surface flow frequently (also during low intensive precipitation).

Soil Type	Dominant Flow	Flow Type
Terra Rossa, Brown Rendzinas and Pale Rendzinas	Hortonian Surface Flow	F
Brown Rendzinas and Pale Rendzinas	Infiltration and Subsequent Percolations	A
Grumusols	Hortonian Surface Flow	F
Brown Lithosols and Loessial Serozems	Saturated Surface Flow	D
Brown Lithosols and Loessial Arid Brown Soil	Saturated Surface Flow	D
Loessial Serozems	Saturated Surface Flow	D


Determination of Slope Contour Map LEGEND: // Contour line Ramallah District Slope Map LEGEND: Slope: 3.5 % 3.5 - 27% Ramallah District

Determination of I' Factor

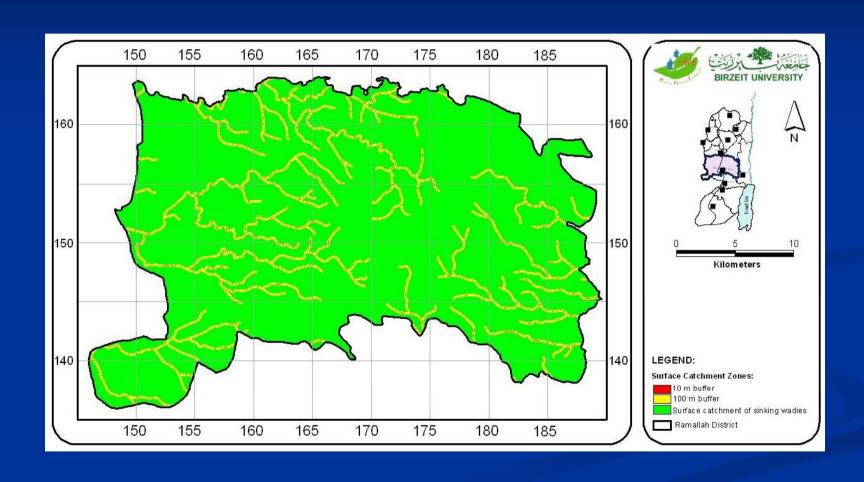

2nd Step: Determination of the l'-factor

Forest						
dominant	flow		Slope			
proces	ss	< 3.5 %	3.5 - 27 %	> 27 %		
infiltration	Type A	1.0	1.0	1.0		
subsurface	Type B	1.0	0.8	0.6		
flow	Type C	1.0	0.6	0.6		
surface	Type D	0.8	0.6	0.4		
flow	Type E	1.0	0.6	0.4		
	Type F	0.8	0.4	0.2		

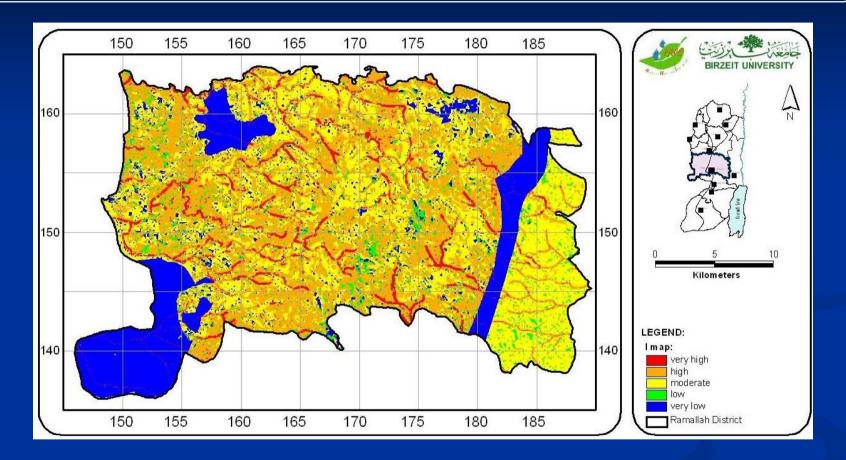
Field/Meadow/Pature						
dominant flow			Slope			
proces	ss	< 3.5 %	3.5 - 27 %	> 27 %		
infiltration	Type A	1.0	1.0	8.0		
subsurface	Type B	1.0	0.6	0.4		
flow	Type C	1.0	0.4	0.2		
surface	Type D	0.6	0.4	0.2		
flow	Type E	0.8	0.4	0.2		
	Type F	0.6	0.2	0.0		

I' Map

_	40	_		4 -
	1	$\boldsymbol{\leftarrow}$	Œ.	
 V	ш		O	ts


Dominant Flow Type	Slope				
	0 – 3.5 %	3.5 – 27 %	> 27 %		
Type A	1.0	1.0	1.0		
Type D	0.8	0.6	0.4		
Type F	0.8	0.4	0.2		

Fiels


Dominant Flow Type	Slope				
	0 – 3.5 %	3.5 – 27 %	> 27 %		
Type A	1.0	1.0	1.0		
Type D	0.6	0.4	0.2		
Type F	0.6	0.2	0.0		

Surface Catchment Map е d A-

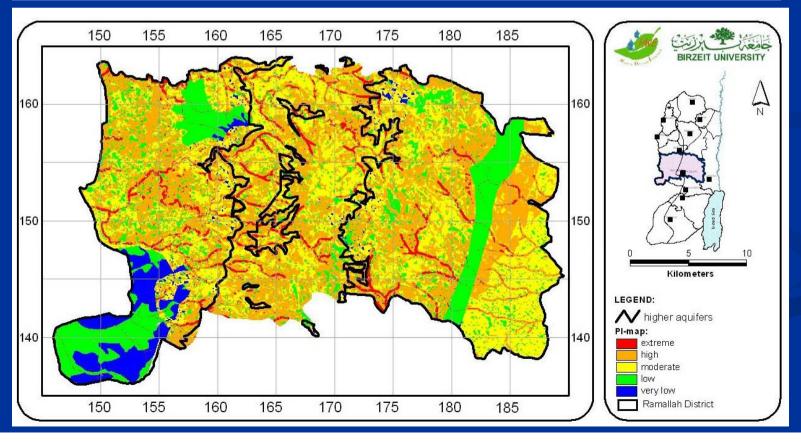
Surface Catchment Map

I-Map

	Surface Catchment Map		I' Factor						
Surface Catchinent Map		0.0	0.2	0.4	0.6	0.8	1.0		
a	10 m buffer on both sides of sinking wadis	0.0	0.0	0.0	0.0	0.0	0.0		
b	100 m buffer on both sides of sinking wadis	0.0	0.2	0.4	0.6	0.8	1.0		
С	Catchment of sinking wadis	0.2	0.4	0.6	0.8	1.0	1.0		

- The dominant flow process is assessed on the basis of the top soil permeability and the presence of low permeable layers.
- Type A Infiltration and subsequent percolation.
 - Type B Fast subsurface storm flow.
 - Type C Very fast subsurface flow.
 - Type D Saturated surface flow.
 - Type E Hortonian surface flow rarely (only during storm rainfall).
 - Type F Hortonian surface flow frequently (also during low intensive precipitation).

PI - Map


The vulnerability map shows the intrinsic vulnerability and the natural protection of the uppermost aquifer. The map shows the spatial distribution of the protection factor π , which is obtained by multiplying the P and I factors:

$$\pi = P \cdot I$$

The areas on each of the three maps are assigned to one of five classes, symbolized by five colors: from red for high risk to blue for low risk. Consequently, one legend can be used for all three maps.

PI - Map

Color	Vulnerability Map (Vulnerability of GW)				I – Map (Degree of Bypassing)		
	Description	π- factor	Description	P – factor	Description	I – factor	
Red	Extreme	0-1	Very low	1	Very high	0.0 - 0.2	
Orange	High	> 1-2	Low	2	High	0.4	
Yellow	Moderate	>2-3	Moderate	3	Moderate	0.6	
Green	Low	>3-4	High	4	Low	0.8	
Blue	Very low	>4-5	Very high	5	Very low	1.0	

PI - Map

From the final PI-map, 5% of the study area (41.6 km²) is classified as extreme, 41% (340.7 km²) as high, 31% (257.6 km²) as moderate, 18% (149.6 km²) as low and 5% (41.6 km²) as very low. Hence, Ramallah-Al Bireh district is classified as high-to-moderate vulnerable.

THANK YOU